[1] Adams R.A.:
Sobolev Spaces. Academic Press, Boston, 1978.
Zbl 1098.46001
[2] Astarita G., Marrucci G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London, New York, 1974.
[3] Batchelor G.K.: An Introduction to Fluid Mechanics. Cambridge Univ. Press, Cambridge, 1967.
[4] Bird R.B., Armstrong R.C., Hassager O.: Dynamics of Polymer Liquids. Vol. 1: Fluid Mechanics. $2^{an{nd}}$ ed., J. Wiley & Sons, New York, 1987.
[5] Frehse J., Málek J., Steinhauer M.:
An existence result for fluids with shear dependent viscosity-steady flows. Nonlinear Anal. 30 5 (1997), 3041-3049; [Proc. 2nd World Congress Nonlin. Analysts].
MR 1602949
[6] Frehse J., Málek J., Steinhauer M.:
On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34 5 (2004), 1064-1083.
MR 2001659
[7] Galdi G.P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems. Springer, New York, 1994.
MR 1284205
[8] Giaquinta M.:
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J., 1983.
MR 0717034 |
Zbl 0516.49003
[9] Giaquinta M., Modica G.:
Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math. 28 (1979), 109-158.
MR 0535699 |
Zbl 0411.35018
[10] Lamb H.:
Hydrodynamics. $6^{an{th}}$ ed., Cambridge Univ. Press, Cambridge, 1945.
Zbl 0828.01012
[11] Naumann J., Wolf J.:
Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids. J. Math. Fluid Mech. 7 2 (2005), 298-313.
MR 2177130 |
Zbl 1070.35023
[12] Růžička M.:
A note on steady flow of fluids with shear dependent viscosity. Nonlinear Anal. 30 5 (1997), 3029-3039; [Proc. 2nd World Congress Nonlin. Analysts].
MR 1602945
[13] Wilkinson W.L.:
Non-Newtonian Fluids. Fluid Mechanics, Mixing and Heat Transfer. Pergamon Press, London, New York, 1960.
MR 0110392 |
Zbl 0124.41802