Title:
|
On modular elements of the lattice of semigroup varieties (English) |
Author:
|
Vernikov, Boris M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
595-606 |
. |
Category:
|
math |
. |
Summary:
|
A semigroup variety is called {\it modular\/} if it is a modular element of the lattice of all semigroup varieties. We obtain a strong necessary condition for a semigroup variety to be modular. In particular, we prove that every modular nil-variety may be given by 0-reduced identities and substitutive identities only. (An identity $u=v$ is called {\it substitutive\/} if the words $u$ and $v$ depend on the same letters and $v$ may be obtained from $u$ by renaming of letters.) We completely determine all commutative modular varieties and obtain an essential information about modular varieties satisfying a permutable identity. (English) |
Keyword:
|
semigroup |
Keyword:
|
variety |
Keyword:
|
nil-variety |
Keyword:
|
0-reduced identity |
Keyword:
|
substitutive identity |
Keyword:
|
permutable identity |
Keyword:
|
lattice of subvarieties |
Keyword:
|
modular element of a lattice |
Keyword:
|
upper-modular element of a lattice |
MSC:
|
08B15 |
MSC:
|
20M07 |
idZBL:
|
Zbl 1174.20324 |
idMR:
|
MR2375161 |
. |
Date available:
|
2009-05-05T17:05:00Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119683 |
. |
Reference:
|
[1] Aĭzenštat A.Ya.: On some sublattices of the lattice of semigroup varieties.in E.S. Lyapin (ed.), Contemp. Algebra, Leningrad State Pedagogical Institute, Leningrad, 1 (1974), 3-15 (Russian). MR 0412306 |
Reference:
|
[2] Evans T.: The lattice of semigroup varieties.Semigroup Forum 2 (1971), 1-43. Zbl 0225.20043, MR 0284528 |
Reference:
|
[3] Ježek J.: The lattice of equational theories. Part I: Modular elements.Czechoslovak Math. J. 31 (1981), 127-152. MR 0604120 |
Reference:
|
[4] Ježek J., McKenzie R.N.: Definability in the lattice of equational theories of semigroups.Semigroup Forum 46 (1993), 199-245. MR 1200214 |
Reference:
|
[5] Mel'nik I.I.: On varieties of $Ømega$-algebras.in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 1 (1969), 32-40 (Russian). MR 0253966 |
Reference:
|
[6] Mel'nik I.I.: On varieties and lattices of varieties of semigroups.in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 2 (1970), 47-57 (Russian). Zbl 0244.20071, MR 0412307 |
Reference:
|
[7] Pollák Gy.: On the consequences of permutation identities.Acta Sci. Math. (Szeged) 34 (1973), 323-333. MR 0322084 |
Reference:
|
[8] Saliĭ V.N.: Equationally normal varieties of semigroups.Izv. Vysš. Učebn. Zaved. Matematika no. 5 (1969), 61-68 (Russian). MR 0263956 |
Reference:
|
[9] Vernikov B.M.: Special elements of the lattice of overcommutative varieties of semigroups.Mat. Zametki 70 (2001), 670-678 (Russian); English translation: Math. Notes 70 (2001), 608-615. Zbl 1036.20052, MR 1882341 |
Reference:
|
[10] Vernikov B.M.: Upper-modular elements of the lattice of semigroup varieties.Algebra Universalis, to appear. Zbl 1161.08002, MR 2470588 |
Reference:
|
[11] Vernikov B.M.: Lower-modular elements of the lattice of semigroup varieties.Semigroup Forum, to appear. Zbl 1143.20039, MR 2353282 |
Reference:
|
[12] Vernikov B.M., Volkov M.V.: Lattices of nilpotent semigroup varieties.L.N. Shevrin (ed.), Algebraic Systems and their Varieties, Ural State University, Sverdlovsk (1988), pp.53-65 (Russian). Zbl 0813.20064 |
Reference:
|
[13] Vernikov B.M., Volkov M.V.: Commuting fully invariant congruences on free semigroups.Contributions to General Algebra, 12 (Vienna, 1999), pp.391-417, Heyn, Klagenfurt, 2000. Zbl 0978.20028, MR 1777677 |
Reference:
|
[14] Vernikov B.M., Volkov M.V.: Modular elements of the lattice of semigroup varieties II.Contributions to General Algebra, 17, pp.173-190, Heyn, Klagenfurt, 2006. Zbl 1108.20058, MR 2237815 |
Reference:
|
[15] Volkov M.V.: Commutative semigroup varieties with distributive subvariety lattices.Contributions to General Algebra, 7, pp.351-359, Hölder-Pichler-Tempsky, Vienna, 1991. Zbl 0762.20022, MR 1143098 |
Reference:
|
[16] Volkov M.V.: Semigroup varieties with commuting fully invariant congruences on free objects.Contemp. Math., 131, Part 3, pp.295-316, American Mathematical Society, Providence, 1992. Zbl 0768.20025, MR 1175889 |
Reference:
|
[17] Volkov M.V.: Modular elements of the lattice of semigroup varieties.Contributions to General Algebra, 16, pp.275-288, Heyn, Klagenfurt, 2005. Zbl 1108.20058, MR 2166965 |
. |