Previous |  Up |  Next

Article

Title: On modular elements of the lattice of semigroup varieties (English)
Author: Vernikov, Boris M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 595-606
.
Category: math
.
Summary: A semigroup variety is called {\it modular\/} if it is a modular element of the lattice of all semigroup varieties. We obtain a strong necessary condition for a semigroup variety to be modular. In particular, we prove that every modular nil-variety may be given by 0-reduced identities and substitutive identities only. (An identity $u=v$ is called {\it substitutive\/} if the words $u$ and $v$ depend on the same letters and $v$ may be obtained from $u$ by renaming of letters.) We completely determine all commutative modular varieties and obtain an essential information about modular varieties satisfying a permutable identity. (English)
Keyword: semigroup
Keyword: variety
Keyword: nil-variety
Keyword: 0-reduced identity
Keyword: substitutive identity
Keyword: permutable identity
Keyword: lattice of subvarieties
Keyword: modular element of a lattice
Keyword: upper-modular element of a lattice
MSC: 08B15
MSC: 20M07
idZBL: Zbl 1174.20324
idMR: MR2375161
.
Date available: 2009-05-05T17:05:00Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119683
.
Reference: [1] Aĭzenštat A.Ya.: On some sublattices of the lattice of semigroup varieties.in E.S. Lyapin (ed.), Contemp. Algebra, Leningrad State Pedagogical Institute, Leningrad, 1 (1974), 3-15 (Russian). MR 0412306
Reference: [2] Evans T.: The lattice of semigroup varieties.Semigroup Forum 2 (1971), 1-43. Zbl 0225.20043, MR 0284528
Reference: [3] Ježek J.: The lattice of equational theories. Part I: Modular elements.Czechoslovak Math. J. 31 (1981), 127-152. MR 0604120
Reference: [4] Ježek J., McKenzie R.N.: Definability in the lattice of equational theories of semigroups.Semigroup Forum 46 (1993), 199-245. MR 1200214
Reference: [5] Mel'nik I.I.: On varieties of $Ømega$-algebras.in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 1 (1969), 32-40 (Russian). MR 0253966
Reference: [6] Mel'nik I.I.: On varieties and lattices of varieties of semigroups.in V.V. Vagner (ed.), Investig. on Algebra, Saratov State University, Saratov, 2 (1970), 47-57 (Russian). Zbl 0244.20071, MR 0412307
Reference: [7] Pollák Gy.: On the consequences of permutation identities.Acta Sci. Math. (Szeged) 34 (1973), 323-333. MR 0322084
Reference: [8] Saliĭ V.N.: Equationally normal varieties of semigroups.Izv. Vysš. Učebn. Zaved. Matematika no. 5 (1969), 61-68 (Russian). MR 0263956
Reference: [9] Vernikov B.M.: Special elements of the lattice of overcommutative varieties of semigroups.Mat. Zametki 70 (2001), 670-678 (Russian); English translation: Math. Notes 70 (2001), 608-615. Zbl 1036.20052, MR 1882341
Reference: [10] Vernikov B.M.: Upper-modular elements of the lattice of semigroup varieties.Algebra Universalis, to appear. Zbl 1161.08002, MR 2470588
Reference: [11] Vernikov B.M.: Lower-modular elements of the lattice of semigroup varieties.Semigroup Forum, to appear. Zbl 1143.20039, MR 2353282
Reference: [12] Vernikov B.M., Volkov M.V.: Lattices of nilpotent semigroup varieties.L.N. Shevrin (ed.), Algebraic Systems and their Varieties, Ural State University, Sverdlovsk (1988), pp.53-65 (Russian). Zbl 0813.20064
Reference: [13] Vernikov B.M., Volkov M.V.: Commuting fully invariant congruences on free semigroups.Contributions to General Algebra, 12 (Vienna, 1999), pp.391-417, Heyn, Klagenfurt, 2000. Zbl 0978.20028, MR 1777677
Reference: [14] Vernikov B.M., Volkov M.V.: Modular elements of the lattice of semigroup varieties II.Contributions to General Algebra, 17, pp.173-190, Heyn, Klagenfurt, 2006. Zbl 1108.20058, MR 2237815
Reference: [15] Volkov M.V.: Commutative semigroup varieties with distributive subvariety lattices.Contributions to General Algebra, 7, pp.351-359, Hölder-Pichler-Tempsky, Vienna, 1991. Zbl 0762.20022, MR 1143098
Reference: [16] Volkov M.V.: Semigroup varieties with commuting fully invariant congruences on free objects.Contemp. Math., 131, Part 3, pp.295-316, American Mathematical Society, Providence, 1992. Zbl 0768.20025, MR 1175889
Reference: [17] Volkov M.V.: Modular elements of the lattice of semigroup varieties.Contributions to General Algebra, 16, pp.275-288, Heyn, Klagenfurt, 2005. Zbl 1108.20058, MR 2166965
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_4.pdf 238.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo