[AP] Arkhangelskii A.V., Ponomarev V.I.:
Fundamentals of General Topology. Reidel Publishing, Boston, 1983.
MR 0785749
[CH] Comfort W., Hager A.:
The projection mapping and other continuous functions on a product space. Math. Scand. (1971), 28 3 77-90.
MR 0315657 |
Zbl 0217.47904
[DHH] Dashiell F., Hager A., Henriksen M.:
Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. (1980), 32 3 657-685.
MR 0586984 |
Zbl 0462.54009
[GH] Gillman L., Henriksen M.:
Rings of continuous functions in which every finitely generated ideal is principal. Trans. Amer. Math. Soc. (1956), 82 2 366-391.
MR 0078980 |
Zbl 0073.09201
[GJ] Gillman L., Jerison M.:
Rings of Continuous Functions. D. Van Nostrand Publishing, New York, 1960.
MR 0116199 |
Zbl 0327.46040
[HLMW] Henriksen M., Larson S., Martinez J., Woods R.G.:
Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. (1994), 345 193-221.
MR 1239640 |
Zbl 0817.06014
[HVW] Henriksen M., Vermeer H., Woods R.G.:
Quasi F-covers of Tychonoff spaces. Trans. Amer. Math. Soc. (1987), 303 2 779-803.
MR 0902798 |
Zbl 0653.54025
[HW] Henriksen M., Woods R.G.:
Cozero complemented spaces; When the space of minimal prime ideals of a $C(X)$ is compact. Topology Appl. (2004), 141 147-170.
MR 2058685 |
Zbl 1067.54015
[HW1] Henriksen M., Wilson R.:
When is $C(X)/P$ a valuation ring for every prime ideal $P$?. Topology Appl. (1992), 44 175-180.
MR 1173255 |
Zbl 0801.54014
[HW2] Henriksen M., Wilson R.:
Almost discrete SV-spaces. Topology Appl. (1992), 46 89-97.
MR 1184107
[L2] Larson S.:
$f$-Rings in which every maximal ideal contains finitely many minimal prime ideals. Comm. Algebra (1997), 25 12 3859-3888.
MR 1481572 |
Zbl 0952.06026
[L3] Larson S.:
Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. Algebra (2003), 31 5 2183-2206.
MR 1976272 |
Zbl 1024.54015
[L4] Larson S.:
Rings of continuous functions on spaces of finite rank and the SV property. Comm. Algebra, to appear.
MR 2345805 |
Zbl 1146.54008
[MW] Martinez J, Woodward S.:
Bezout and Prüfer $f$-rings. Comm. Algebra (1992), 20 2975-2989.
MR 1179272 |
Zbl 0766.06018