[1] Bauer H.:
Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Math. 22, Springer, Berlin-New York, 1966.
MR 0210916 |
Zbl 0142.38402
[2] Björn A.:
Characterizations of $p$-superharmonic functions on metric spaces. Studia Math. 169 (2005), 45-62.
MR 2139641 |
Zbl 1079.31006
[3] Björn A.:
A weak Kellogg property for quasiminimizers. Comment. Math. Helv. 81 (2006), 809-825.
MR 2271223 |
Zbl 1105.31007
[4] Björn A., Björn J.:
Boundary regularity for $p$-harmonic functions and solutions of the obstacle problem. J. Math. Soc. Japan 58 (2006), 1211-1232.
MR 2276190 |
Zbl 1211.35109
[5] Björn A., Björn J., Shanmugalingam N.:
The Dirichlet problem for $p$-harmonic functions on metric spaces. J. Reine Angew. Math. 556 (2003), 173-203.
MR 1971145 |
Zbl 1018.31004
[6] Björn A., Björn J., Shanmugalingam N.:
The Perron method for $p$-harmonic functions. J. Differential Equations 195 (2003), 398-429.
MR 2016818 |
Zbl 1039.35033
[7] Björn J.:
Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46 (2002), 383-403.
MR 1936925 |
Zbl 1026.49029
[8] Björn J., MacManus P., Shanmugalingam N.:
Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces. J. Anal. Math. 85 (2001), 339-369.
MR 1869615 |
Zbl 1003.31004
[9] Björn J., Shanmugalingam N.:
Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. to appear in J. Math. Anal. Appl.
MR 2319654
[10] Cheeger J.:
Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal. 9 (1999), 428-517.
MR 1708448
[11] Hajłasz, P., Koskela P.:
Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000).
MR 1683160
[12] Heinonen J., Kilpeläinen T., Martio O.:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford, 1993.
MR 1207810
[13] Heinonen J., Koskela P.:
Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61.
MR 1654771 |
Zbl 0915.30018
[14] Keith S., Zhong X.:
The Poincaré inequality is an open ended condition. preprint, Jyväskylä, 2003.
MR 2415381
[15] Kilpeläinen T., Malý J.:
The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137-161.
MR 1264000
[16] Kinnunen J., Martio O.:
Nonlinear potential theory on metric spaces. Illinois Math. J. 46 (2002), 857-883.
MR 1951245
[17] Kinnunen J., Martio O.:
Potential theory of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490.
MR 1996447 |
Zbl 1035.31007
[18] Lehtola P.:
An axiomatic approach to nonlinear potential theory. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40.
MR 0879323 |
Zbl 0695.31014
[19] Maz'ya V.G.:
On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242.
MR 0274948
[20] Perron O.:
Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$. Math. Z. 18 (1923), 42-54.
MR 1544619
[21] Shanmugalingam N.:
Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), 243-279.
MR 1809341 |
Zbl 0974.46038
[22] Shanmugalingam N.:
Harmonic functions on metric spaces. Illinois J. Math. 45 (2001), 1021-1050.
MR 1879250 |
Zbl 0989.31003
[23] Shanmugalingam N.:
Some convergence results for $p$-harmonic functions on metric measure spaces. Proc. London Math. Soc. 87 (2003), 226-246.
MR 1978575 |
Zbl 1034.31006
[24] Wiener N.: Certain notions in potential theory. J. Math. Phys. 3 (1924), 24-51.
[25] Wiener N.: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146.