Previous |  Up |  Next

Article

Keywords:
axiomatic potential theory; capacity; corkscrew; Dirichlet problem; doubling; metric space; nonlinear; $p$-harmonic; Poincaré inequality; quasiharmonic; quasisuperharmonic; quasiminimizer; quasisuperminimizer; regular set; Wiener solution
Summary:
Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions.
References:
[1] Bauer H.: Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Math. 22, Springer, Berlin-New York, 1966. MR 0210916 | Zbl 0142.38402
[2] Björn A.: Characterizations of $p$-superharmonic functions on metric spaces. Studia Math. 169 (2005), 45-62. MR 2139641 | Zbl 1079.31006
[3] Björn A.: A weak Kellogg property for quasiminimizers. Comment. Math. Helv. 81 (2006), 809-825. MR 2271223 | Zbl 1105.31007
[4] Björn A., Björn J.: Boundary regularity for $p$-harmonic functions and solutions of the obstacle problem. J. Math. Soc. Japan 58 (2006), 1211-1232. MR 2276190 | Zbl 1211.35109
[5] Björn A., Björn J., Shanmugalingam N.: The Dirichlet problem for $p$-harmonic functions on metric spaces. J. Reine Angew. Math. 556 (2003), 173-203. MR 1971145 | Zbl 1018.31004
[6] Björn A., Björn J., Shanmugalingam N.: The Perron method for $p$-harmonic functions. J. Differential Equations 195 (2003), 398-429. MR 2016818 | Zbl 1039.35033
[7] Björn J.: Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46 (2002), 383-403. MR 1936925 | Zbl 1026.49029
[8] Björn J., MacManus P., Shanmugalingam N.: Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces. J. Anal. Math. 85 (2001), 339-369. MR 1869615 | Zbl 1003.31004
[9] Björn J., Shanmugalingam N.: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. to appear in J. Math. Anal. Appl. MR 2319654
[10] Cheeger J.: Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal. 9 (1999), 428-517. MR 1708448
[11] Hajłasz, P., Koskela P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). MR 1683160
[12] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford, 1993. MR 1207810
[13] Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61. MR 1654771 | Zbl 0915.30018
[14] Keith S., Zhong X.: The Poincaré inequality is an open ended condition. preprint, Jyväskylä, 2003. MR 2415381
[15] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137-161. MR 1264000
[16] Kinnunen J., Martio O.: Nonlinear potential theory on metric spaces. Illinois Math. J. 46 (2002), 857-883. MR 1951245
[17] Kinnunen J., Martio O.: Potential theory of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490. MR 1996447 | Zbl 1035.31007
[18] Lehtola P.: An axiomatic approach to nonlinear potential theory. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40. MR 0879323 | Zbl 0695.31014
[19] Maz'ya V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242. MR 0274948
[20] Perron O.: Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$. Math. Z. 18 (1923), 42-54. MR 1544619
[21] Shanmugalingam N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), 243-279. MR 1809341 | Zbl 0974.46038
[22] Shanmugalingam N.: Harmonic functions on metric spaces. Illinois J. Math. 45 (2001), 1021-1050. MR 1879250 | Zbl 0989.31003
[23] Shanmugalingam N.: Some convergence results for $p$-harmonic functions on metric measure spaces. Proc. London Math. Soc. 87 (2003), 226-246. MR 1978575 | Zbl 1034.31006
[24] Wiener N.: Certain notions in potential theory. J. Math. Phys. 3 (1924), 24-51.
[25] Wiener N.: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146.
Partner of
EuDML logo