Article
Keywords:
quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space
Summary:
It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel'skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel'skii. \smallskip \noindent {\bf Theorem.} {\sl Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$.} \smallskip Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel'skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\Cal W$ of subsets of a sequential space $X$ is said to be a {\it $w$-system\/} for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\Cal V\subseteq \Cal W$ such that $x\in \bigcap \Cal V$, $\bigcup \Cal V$ is a weak-neighborhood of $x$, and $\bigcup \Cal V\subseteq U$. \smallskip \noindent {\bf Theorem.} {\sl A sequential space $X$ with a point-countable $w$-system is a $D$-space.} \smallskip \noindent {\bf Corollary.} {\sl A space $X$ with a point-countable weak-base is a $D$-space.} \smallskip \noindent {\bf Corollary.} {\sl Any $T_2$ quotient $s$-image of a metric space is a $D$-space.}
References:
[A1] Arhangel'skii A.V.:
Mappings and spaces. Russian Math. Surveys 21 (1966), 115-162.
MR 0227950
[A2] Arhangel'skii A.V.:
$D$-spaces and finite unions. Proc. Amer. Math. Soc. 132 (2004), 2163-2170.
MR 2053991 |
Zbl 1045.54009
[A3] Arhangel'skii A.V.:
$D$-spaces and covering properties. Topology Appl. 146/147 (2005), 437-449.
MR 2107163 |
Zbl 1063.54013
[ABuz] Arhangel'skii A.V., Buzyakova R.:
Addition theorems and $D$-spaces. Comment. Math. Univ. Carolin. 43 (2002), 653-663.
MR 2045787 |
Zbl 1090.54017
[Buz1] Buzyakova R.:
On $D$-property of strong $\Sigma$-spaces. Comment. Math. Univ. Carolin. 43.3 (2002), 493-495.
MR 1920524 |
Zbl 1090.54018
[Buz2] Buzyakova R.:
Hereditary $D$-property of function spaces over compacta. Proc. Amer. Math. Soc. 132 (2004), 3433-3439.
MR 2073321 |
Zbl 1064.54029
[vDP] van Douwen E.K., Pfeffer W.:
Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81 (1979), 371-377.
MR 0547605 |
Zbl 0409.54011
[D] Džamonja M.:
On $D$-spaces and discrete families of sets. in: Set theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., Providence, RI, 2002, pp.45-63.
MR 1903849