Article
Keywords:
weak (continuous) selection; weak orderability; Vietoris topology; dense countable subset; isolated point; countable base; collectionwise Hausdorff space
Summary:
We show that if a Hausdorff topological space $X$ satisfies one of the following properties: \noindent a) $X$ has a countable, discrete dense subset and $X^2$ is hereditarily collectionwise Hausdorff; \noindent b) $X$ has a discrete dense subset and admits a countable base; \noindent then the existence of a (continuous) weak selection on $X$ implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.
References:
[1] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.:
Selections and suborderability. Fund. Math. 175 1-33 (2002).
MR 1971236 |
Zbl 1019.54014
[2] Engelking R.:
General Topology. Heldermann Verlag, Berlin, revised and completed edition, 1989.
MR 1039321 |
Zbl 0684.54001
[3] García-Ferreira S., Gutev V., Nogura T., Sanchis M., Tomita A.:
Extreme selections for hyperspaces of topological spaces. Topology Appl. 122 157-181 (2002).
MR 1919299 |
Zbl 1034.54007
[4] García-Ferreira S., Sanchis M.:
Weak selections and pseudocompactness. Proc. Amer. Math. Soc. 132 1823-1825 (2004).
MR 2051146 |
Zbl 1048.54012
[5] Gutev V., Nogura T.:
A topology generated by selections. Topology Appl. 153 (2005), 900-911.
MR 2203899 |
Zbl 1089.54005
[7] van Mill J., Wattel E.:
Selections and orderability. Proc. Amer. Math. Soc. 83 601-605 (1981).
MR 0627702 |
Zbl 0473.54010