Previous |  Up |  Next

Article

Keywords:
Martin boundary; biharmonic functions; coupled partial differential equations
Summary:
In this paper, we study the Martin boundary associated with a harmonic structure given by a coupled partial differential equations system. We give an integral representation for non negative harmonic functions of this structure. In particular, we obtain such results for biharmonic functions (i.e. $\triangle^{2}\varphi =0$) and for non negative solutions of the equation $\triangle^{2}\varphi =\varphi $.
References:
[1] Benyaiche A.: On almost biharmonic functions in $\Bbb R^n$. Publ. Math., Ec. Norm. Supér, Takaddoum 4 (1988), 47-53 (See Zbl. Math. 678).
[2] Benyaiche A.: Distributions bi-sousharmoniques sur $\Bbb R^n$ $(n \geq 2)$. Math. Bohem. 119 (1994), 1 1-13. MR 1303547
[3] Benyaiche A.: Mesures de représentation sur les espaces biharmoniques. Proc. ICPT 91, Kluwer Acad. Publ., Dordrecht, 1994, pp.171-178. MR 1293761 | Zbl 0824.31006
[4] Benyaiche A., Ghiate S.: Propriété de moyenne restriente associée à un système d'E.D.P. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (1) 27 (2003), 125-143. MR 2056415
[5] Benyaiche A., Ghiate S.: Frontière de Martin biharmonique. preprint, 2000.
[6] Benyaiche A., El Gourari A.: Caractérisation des ensembles essentiels. J. Math. Soc. Japan 54 2 (2002), 467-486. MR 1883527
[7] Bliedtner J., Hansen W.: Potential Theory: An Analytic and Probabilistic Approach to Balayage. Universitext, Springer, Berlin, 1986. MR 0850715 | Zbl 0706.31001
[8] Boukricha A.: Espaces biharmoniques. Théorie du potentiel (Orsay, 1983), Lecture Notes in Math. 1096, Springer, Berlin, 1984, pp.116-149. MR 0890356 | Zbl 0567.31006
[9] Bouleau N.: Espaces biharmoniques et couplage de processus de Markov. J. Math. Pures Appl. 59 (1980), 187-240. MR 0581988 | Zbl 0403.60068
[10] Brelot M.: On Topologies and Boundaries in Potential Theory. Lecture Notes in Math. 175, Springer, Berlin, 1971. MR 0281940 | Zbl 0277.31002
[11] Brelot M.: Eléments de la théorie classique du potentiel. 4ème edition, Centre de Documentation Universitaire, Paris, 1969. MR 0106366 | Zbl 0116.07503
[12] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces. Springer, New York-Heidelberg, 1972. MR 0419799 | Zbl 0248.31011
[13] Doob J.L.: Classical Potential Theory and its Probabilistic Counterpart. Springer, New York, 1984. MR 0731258 | Zbl 0990.31001
[14] Hansen W.: Modification of balayage spaces by transitions with application to coupling of PDE's. Nagoya Math. J. 169 (2003), 77-118. MR 1962524 | Zbl 1094.31005
[15] Helms L.L.: Introduction to Potential Theory. Wiley, New York, 1969. MR 0261018 | Zbl 0188.17203
[16] Phelps R.R.: Lectures on Choquet's Theorem. Van Nostrand, Princeton-Toronto-London, 1966. MR 0193470 | Zbl 0997.46005
[17] Hervé R.M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier 12 (1962), 415-571. MR 0139756
[18] Hervé R.M., Hervé M.: Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus. Ann. Inst. Fourier 19 1 (1969), 305-359. MR 0261027
[19] Meyer M.: Balayage spaces on topological sums. Potential Theory (Prague, 1987), Plenum, New York, 1988, pp. 237-246. MR 0986301 | Zbl 0691.31004
[20] Nakai M.: Martin boundary over an isolated singularity of rotation free density. J. Math. Soc. Japan 26 (1974), 483-507. MR 0361119 | Zbl 0281.30012
[21] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, I. Ann. Inst. Fourier 26 1 35-97 (1976). MR 0477101
[22] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques, II. Ann. Inst. Fourier 26 3 1-47 (1976). MR 0477101
Partner of
EuDML logo