Previous |  Up |  Next

Article

Keywords:
WKA; SWKA Banach spaces; $K$-analytic space; Baire space; Polish space
Summary:
In this paper we define and investigate a new subclass of those Banach spaces which are $K$-analytic in their weak topology; we call them strongly weakly $K$-analytic (SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces) and it is related to that in the same way as the familiar classes of weakly $K$-analytic (WKA) and weakly compactly generated (WCG) Banach spaces are related. We show that: (i) not every separable Banach space is SWKA; (ii) every separable SWKA Banach space not containing $\ell^1$ is Polish; (iii) we answer in the negative a question posed in [S-W] by constructing a subspace $X$ of the SWCG space $L^1[0,1]$ which is not SWCG.
References:
[A-M] Argyros S., Mercourakis S.: On weakly Lindelöf Banach spaces. Rocky Mountain J. Math. 23 395-446 (1993). MR 1226181 | Zbl 0797.46009
[Ch] Christensen J.P.R.: Topology and Borel Structure. North-Holland, Amsterdam, 1974. MR 0348724 | Zbl 0273.28001
[D-G-Z] Deville R., Godefroy G., Zizler V.: Smoothness and renorming in Banach spaces. Longman, Harlow, 1993. MR 1211634
[E] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[E-W] Edgar G.A., Wheller R.F.: Topological properties of Banach spaces. Pacific J. Math. 115 2 317-350 (1984). MR 0765190
[H-H-Z] Habala P., Hájek P., Zizler V.: Introduction to Banach Spaces I and II. Matfyzpress, Praha, 1996.
[J-R] Jayne J.E., Rogers C.A.: $K$-analytic sets. in Analytic Sets, Academic Press, London, 1980. Zbl 0589.54047
[K] Kuratowski K.: Topology. Vol. I (1966), Vol. II (1968), Academic Press, New York-London. MR 0217751 | Zbl 0849.01044
[L-T] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer, Berlin-New York, 1977. MR 0500056 | Zbl 0362.46013
[M] Mercourakis S.: On weakly countably determined Banach spaces. Trans. Amer. Math. Soc. 300 307-327 (1987). MR 0871678 | Zbl 0621.46018
[M-N] Mercourakis S., Negrepontis S.: Banach Spaces and Topology II. Recent Progress in General Topology, M. Hušek and J. Van Mill (eds.), North-Holland, Amsterdam, 1992, pp.493-536. MR 1229137 | Zbl 0832.46005
[N] Negrepontis S.: Banach Spaces and Topology. Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam, 1984, pp.1045-1142. MR 0776642 | Zbl 0832.46005
[R0] Rosenthal H.P.: A characterization of Banach spaces containing $\ell^1$. Proc. Nat. Acad. Sci. (USA) 71 2411-2413 (1974). MR 0358307
[R1] Rosenthal H.P.: The heredity problem for weakly compactly generated Banach spaces. Compositio Math. 28 83-111 (1974). MR 0417762 | Zbl 0298.46013
[R2] Rosenthal H.P.: Weak*-Polish Banach spaces. J. Funct. Anal. 76 267-316 (1988). MR 0924462 | Zbl 0655.46011
[St] Stegall C.: The Radon-Nikodym property in conjugate Banach spaces. Trans. Amer. Math. Soc. 206 213-223 (1975). MR 0374381 | Zbl 0318.46056
[S] Stern J.: A Ramsey theorem for trees, with an application to Banach spaces. Israel J. Math. 29 179-188 (1978). MR 0476554 | Zbl 0378.46012
[S-W] Schlüchtermann G., Wheeler R.F.: On Strongly WCG Banach spaces. Math. Z. 199 387-398 (1988). MR 0961818
[T] Talagrand M.: Espaces de Banach faiblement $\Cal K$-analytiques. Ann. of Math. 110 407-438 (1979). MR 0554378
[To] Todorčević S.: Compact subsets of the first Baire class. J. Amer. Math. Soc. 12 4 1179-1212 (1999). MR 1685782
Partner of
EuDML logo