Previous |  Up |  Next

Article

Keywords:
generalized Stokes problem; weak solutions; regularity up to the boundary
Summary:
We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the ``pressure'' gradient $\nabla p$ is replaced by a linear operator of first order.
References:
[1] Adams R.A.: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 1098.46001
[2] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12 (1959), 623-727. MR 0125307 | Zbl 0093.10401
[3] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math. 17 (1964), 35-92. MR 0162050 | Zbl 0123.28706
[4] Amrouche C., Girault V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44(119) (1994), 1 109-140. MR 1257940 | Zbl 0823.35140
[5] Fuchs M., Seregin G.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics, 1749, Springer Verlag, Berlin, 2000. MR 1810507 | Zbl 0964.76003
[6] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I: Linearized Steady Problems. Springer Verlag, New York, 1994. MR 1284205
[7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[8] Sohr H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel, 2001. MR 1928881 | Zbl 0983.35004
[9] Solonnikov V.A.: Initial-boundary value problem for generalized Stokes equations. Math. Bohem. 126 (2001), 2 505-519. MR 1844287 | Zbl 1003.76016
[10] Stará J.: Regularity results for non-linear elliptic systems in two dimensions. Ann. Scuola Norm. Sup. Pisa (3) 25 (1971), 163-190. MR 0299935
[11] Hron J., Málek J., Nečas J., Rajagopal K.R.: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Math. Comput. Simulation 61 3-6 (2003), 297-315. MR 1984133 | Zbl 1205.76159
[12] Málek J., Nečas J., Rajagopal K.R.: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165 (2002), 243-269. MR 1941479 | Zbl 1022.76011
[13] Franta M., Málek J., Rajagopal K.R.: On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. Royal Soc. London Ser. A 461 (2005), 651-670. MR 2121929 | Zbl 1145.76311
Partner of
EuDML logo