Article
Keywords:
intuitionistic logic; polynomial-space; sequent calculus; Kripke semantics
Summary:
The well-known Dyckoff's 1992 calculus/procedure for intuitionistic propositional logic is considered and analyzed. It is shown that the calculus is Kripke complete and the procedure in fact works in polynomial space. Then a multi-conclusion intuitionistic calculus is introduced, obtained by adding one new rule to known calculi. A simple proof of Kripke completeness and polynomial-space decidability of this calculus is given. An upper bound on the depth of a Kripke counter-model is obtained.
References:
[1] Buss S., Pudlák P.:
On the computational content of intuitionistic propositional proofs. Ann. Pure Appl. Logic 109 49-64 (2001).
MR 1835237 |
Zbl 1009.03027
[2] van Dalen D.:
Intuitionistic logic. in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, Eds., no. 164-167 in Synthese Library, Chapter III.4, pp.225-340, Kluwer, Dordrecht, 1986.
Zbl 1002.03053
[3] Dershowitz N., Manna Z.:
Proving termination with multiset orderings. Comm. ACM 22 465-476 (1979).
MR 0540043 |
Zbl 0431.68016
[4] Dyckhoff R.:
Contraction-free sequent calculi for intuitionistic logic. J. Symbolic Logic 57 795-807 (1992).
MR 1187448 |
Zbl 0761.03004
[5] Hudelmaier J.:
An $O(n\log n)$-space decision procedure for intuitionistic propositional logic. J. Logic Comput. 3 1 63-75 (1993).
MR 1240404 |
Zbl 0788.03010
[7] Ladner R.:
The computational complexity of provability in systems of modal logic. SIAM J. Comput. 6 3 467-480 (1977).
MR 0450027
[9] Statman R.:
Intuitionistic propositional logic is polynomial-space complete. Theoretical Comput. Sci. 9 67-72 (1979).
MR 0535124 |
Zbl 0411.03049
[12] Troelstra A.S., Schwichtenberg H.:
Basic Proof Theory. Cambridge University Press, Cambridge, 1996.
MR 1409368 |
Zbl 0957.03053