Article
Keywords:
Baire; linearly ordered space; compact-open topology; Choquet; Moving Off Property
Summary:
We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property.
References:
[B] Bouziad A.:
Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property. Topology Appl. 120 (2002), 283-299.
MR 1897264 |
Zbl 1057.54016
[EL] Engelking R., Lutzer D.:
Paracompactness in ordered spaces. Fund. Math. 94 (1977), 49-58.
MR 0428278 |
Zbl 0351.54014
[G$_1$] Gruenhage G.:
Games, covering properties and Eberlein compacts. Topology Appl. 23 (1986), 291-297.
MR 0858337 |
Zbl 0604.54022
[GM] Gruenhage G., Ma D.K.:
Baireness of $C_k(X)$ for locally compact $X$. Topology Appl. 80 (1997), 131-139.
MR 1469473
[Ma] Ma D.K.:
The Cantor tree, the $\gamma$-property, and Baire function spaces. Proc. Amer. Math. Soc. 119 (1993), 903-913.
MR 1165061 |
Zbl 0785.54019
[MN] McCoy R.A., Ntantu I.:
Completeness properties of function spaces. Topology Appl. 22 (1986), 191-206.
MR 0836326 |
Zbl 0621.54011