Article
Keywords:
bi-ideal-simple; semiring; zeropotent
Summary:
Commutative congruence-simple semirings were studied in [2] and [7] (but see also [1], [3]--[6]). The non-commutative case almost (see [8]) escaped notice so far. Whatever, every congruence-simple semiring is bi-ideal-simple and the aim of this very short note is to collect several pieces of information on these semirings.
References:
[1] Eilhauer R.:
Zur Theorie der Halbkörper, I. Acta Math. Acad. Sci. Hungar. 19 (1968), 23-45.
MR 0222120 |
Zbl 0183.04202
[2] El Bashir R., Hurt J., Jančařík A., Kepka T.:
Simple commutative semirings. J. Algebra 236 (2001), 277-306.
MR 1808355 |
Zbl 0976.16034
[3] Golan J.:
The Theory of Semirings with Application in Math. and Theoretical Computer Science. Pitman Monographs and Surveys in Pure and Applied Mathematics 54 Longman, Harlow (1992).
MR 1163371
[4] Hebisch U., Weinert H.J.:
Halbringe. Algebraische Theorie und Anwendungen in der Informatik. Teubner Stuttgart (1993).
MR 1311247 |
Zbl 0829.16035
[5] Hutehins H.C., Weinert H.J.:
Homomorphisms and kernels of semifields. Period. Math. Hungar. 21 (1990), 113-152.
MR 1070951
[6] Koch H.:
Über Halbkörper, die in algebraischen Zahlkörpern enhalten sind. Acta Math. Acad. Sci. Hungar. 15 (1964), 439-444.
MR 0168609
[7] Mitchell S.S., Fenoglio P.B.:
Congruence-free commutative semirings. Semigroup Forum 37 (1988), 79-91.
MR 0929445 |
Zbl 0636.16020