[1] Adámek J., Rosický J.:
Locally Presentable and Accessible Categories. Cambridge University Press Cambridge (1994).
MR 1294136
[2] Adams M.E., Adaricheva K.V., Dziobiak W., Kravchenko A.V.:
Some open questions related to the problem of Birkhoff and Maltsev. Studia Logica 78 (2004), 357-378.
MR 2108035
[3] Adams M.E., Dziobiak W.:
$Q$-universal quasivarieties of algebras. Proc. Amer. Math. Soc. 120 (1994), 1053-1059.
MR 1172942 |
Zbl 0810.08007
[4] Adams M.E., Dziobiak W.:
Lattices of quasivarieties of $3$-element algebras. J. of Algebra 166 (1994),181-210.
MR 1276823 |
Zbl 0806.08005
[5] Adams M.E., Dziobiak W.:
Finite-to-finite universal quasivarieties are $Q$-universal. Algebra Universalis 46 (2001), 253-283.
MR 1835799 |
Zbl 1059.08002
[6] Adams M.E., Dziobiak W.:
The lattice of quasivarieties of undirected graphs. Algebra Universalis 47 (2002), 7-11.
MR 1901728 |
Zbl 1059.08003
[7] Adams M.E., Dziobiak W.:
Quasivarieties of idempotent semigroups. Internat. J. Algebra Comput. 13 (2003), 733-752.
MR 2028101 |
Zbl 1042.08002
[8] Demlová M., Koubek V.:
Endomorphism monoids in varieties of bands. Acta Sci. Math. (Szeged) 66 (2000), 477-516.
MR 1804205
[9] Demlová M., Koubek V.:
A weak version of universality in semigroup varieties. Novi Sad J. Math. 34 (2004), 37-86.
MR 2136462
[10] Gorbunov V.A.:
Algebraic Theory of Quasivarieties. Plenum Publishing Co. New York (1998).
MR 1654844 |
Zbl 0986.08001
[11] Hedrlín Z., Lambek J.:
How comprehensive is the category of semigroups?. J. Algebra 11 (1969), 195-212.
MR 0237611
[12] Koubek V., Sichler J.:
Universal varieties of semigroups. J. Austral. Math. Soc. Ser. A 36 (1984), 143-152.
MR 0725742 |
Zbl 0549.20038
[13] Koubek V., Sichler J.:
On relative universality and $Q$-universality. Studia Logica 78 (2004), 279-291.
MR 2108030 |
Zbl 1079.08009
[14] Koubek V., Sichler J.:
Almost $ff$-universal and $Q$-universal varieties of modular $0$-lattices. Colloq. Math. 101 (2004), 161-182.
MR 2110722 |
Zbl 1066.06004
[15] Kravchenko A.V.:
$Q$-universal quasivarieties of graphs. Algebra and Logic 41 (2002), 173-181.
MR 1934538 |
Zbl 1062.08013
[16] Mendelsohn E.:
On a technique for representing semigroups as endomorphism semigroups of graphs with given properties. Semigroup Forum 4 (1972), 283-294.
MR 0304533 |
Zbl 0262.20083
[17] Pultr A., Trnková V.:
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland Amsterdam (1980).
MR 0563525
[18] Sapir M.V.:
The lattice of quasivarieties of semigroups. Algebra Universalis 21 (1985), 172-180.
MR 0855737 |
Zbl 0599.08014
[19] Sizyi S.V.:
Quasivarieties of graphs. Siberian Math. J. 35 (1994), 783-794.
MR 1302441