Previous |  Up |  Next

Article

Keywords:
lipchitzian mapping; uniformly lipschitzian mapping; $n$-periodic mapping; fixed point
Summary:
Using modified Halpern iterations, by elementary method, we extend and improve results obtained by W.A. Kirk (Proc. Amer. Math. Soc. {\bf 29} (1971), 294) and others, which have recently been presented in Chapter 11 of {\it Handbook of Metric Fixed Point Theory\/} (2001).
References:
[1] Goebel K.: Convexity of balls and fixed point theorems for mappings with nonexpansive square. Compositio Math. 22 (1970), 269-274. MR 0273477 | Zbl 0202.12802
[2] Goebel K., Kirk W.A.: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Math. 47 (1973), 135-140. MR 0336468 | Zbl 0265.47044
[3] Goebel K., Złotkiewicz E.: Some fixed point theorems in Banach spaces. Colloquium Math. 23 (1971), 103-106. MR 0303367
[4] Górnicki J.: Fixed points of involutions. Math. Japonica 43 1 (1996), 151-155. MR 1373993
[5] Halpern B.: Fixed points of nonexpansive maps. Bull. Amer. Math. Soc. 73 (1967), 957-961. MR 0218938
[6] Kim T.H., Kirk W.A.: Fixed point theorems for lipschitzian mappings in Banach spaces. Nonlinear Anal. 26 (1996), 1905-1911. MR 1386122 | Zbl 0856.47031
[7] Kirk W.A.: A fixed point theorem for mappings with a nonexpansive iterate. Proc. Amer. Math. Soc. 29 (1971), 294-298. MR 0284887 | Zbl 0213.41303
[8] Kirk W.A., Sims B. (Eds.): Handbook of Metric Fixed Point Theory. Kluwer Acad. Pub., Dordrecht-Boston-London, 2001. MR 1904271 | Zbl 0970.54001
[9] Linhart J.: Fixpunkte von Involutionen n-ter Ordnung. Österreich. Akad., Wiss. Math.-Natur., kl. II, 180 (1973), 89-93. MR 0303369 | Zbl 0244.47041
Partner of
EuDML logo