[1] Bandelt H.-J.:
Tolerance relations on lattices. Bull. Austral. Math. Soc. 23 (1981), 367-381.
MR 0625179 |
Zbl 0449.06005
[3] Chajda I.:
Algebraic theory of tolerance relations. Univerzita Palackého Olomouc, Olomouc, 1991.
Zbl 0747.08001
[5] Chajda I., Horváth E.K.:
A triangular scheme for congruence distributivity. Acta Math. Sci. Szeged 68 (2002), 29-35.
MR 1916565 |
Zbl 0997.08001
[6] Chajda I., Czédli G., Horváth E.K.:
Trapezoid lemma and congruence distributivity. Math. Slovaca 53 (2003), 247-253.
MR 2025021 |
Zbl 1058.08007
[7] Chajda I., Radeleczki S.:
$0$-conditions and tolerance schemes. Acta Math. Univ. Comenianae 72 2 (2003), 177-184.
MR 2040261 |
Zbl 1087.08002
[8] Czédli G., Horváth E.K.:
Congruence distributivity and modularity permit tolerances. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 41 (2002), 43-53.
MR 1967339 |
Zbl 1043.08002
[9] Czédli G., Lenkehegyi A.:
On classes of ordered algebras and quasiorder distributivity. Acta Sci. Math. 46 (1983), 41-54.
MR 0739021
[10] Czédli G., Horváth E.K., Radeleczki S.:
On tolerance lattices of algebras in congruence modular varieties. Acta Math. Hungar. 100 (1-2) (2003), 9-17.
MR 1984855 |
Zbl 1049.08007
[11] Grillet P.A., Varlet J.C.:
Complementedness conditions in lattices. Bull. Soc. Roy. Sci. Liège 36 (1967), 628-642.
MR 0228389 |
Zbl 0157.34202
[12] Gumm H.-P.:
Geometrical methods in congruence modular algebras. Mem. Amer. Math. Soc. 45 286 (1983).
MR 0714648 |
Zbl 0547.08006
[13] Pinus A.G., Chajda I.:
Quasiorders on universal algebras. Algebra i Logika 32 3 (1993), 308-325 (in Russian).
MR 1286557 |
Zbl 0824.08002
[14] Radeleczki S., Schweigert D.:
Lattices with complemented tolerance lattice. Czechoslovak Math. J. 54 (129) (2004), 2 407-412.
MR 2059261 |
Zbl 1080.06006
[15] Stern M.:
Semimodular Lattices, Theory and Applications. Cambridge University Press, Cambridge, New York, Melbourne, 1999.
MR 1695504
[16] Varlet J.C.:
A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Sci. Liège 37 (1968), 149-158.
MR 0228390 |
Zbl 0162.03501