Article
Keywords:
Dunkl operator; Fourier-Dunkl transform; entire function of exponential type; integro-differential-difference equation
Summary:
In this work we consider the Dunkl operator on the complex plane, defined by $$ \Cal D_k f(z)=\frac{d}{dz}f(z)+k\frac{f(z)-f(-z)}{z}, k\geq 0. $$ We define a convolution product associated with $\Cal D_k$ denoted $\ast_k$ and we study the integro-differential-difference equations of the type $\mu \ast_k f=\sum_{n=0}^{\infty}a_{n,k}\Cal D^n_k f$, where $(a_{n,k})$ is a sequence of complex numbers and $\mu $ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type.
References:
[1] Ben Salem N., Kallel S.:
Mean-periodic functions associated with the Dunkl operators. Integral Transforms Spec. Funct. 15 2 155-179 (2004).
MR 2053408 |
Zbl 1130.42009
[2] Ben Salem N., Masmoudi W.:
Integro-differential equations associated with the Bessel operator on the complex domain. C.R. Math. Rep. Acad. Sci. Canada 18 6 257-262 (1996).
MR 1441647 |
Zbl 0880.45008
[4] Dunkl C.F.:
Differential difference operators associated to reflection groups. Trans. Amer. Math. Soc. 311 167-183 (1989).
MR 0951883 |
Zbl 0652.33004
[5] Dunkl C.F.:
Integral kernels with reflection group invariance. Canad. J. Math. 43 1213-1227 (1991).
MR 1145585 |
Zbl 0827.33010
[7] Martineau A.:
Sur les fonctionnelles analytiques et la transformation de Fourier-Borel. J. Analyse Math. 1-64 (1963).
MR 0159220 |
Zbl 0124.31804
[8] Mourou M.A.:
Taylor series associated with a differential-difference operator on the real line. J. Comput. Appl. Math. 153 343-354 (2003).
MR 1985705 |
Zbl 1028.34058
[9] Mugler D.H.:
Convolution, differential equations, and entire function of exponential type. Trans. Amer. Math. Soc. 216 145-187 (1976).
MR 0387587
[10] Rosenblum M.:
Generalized Hermite Polynomials and the Bose-like Oscillator Calculus. in: Operator Theory: Advances and Applications, vol. 73, Birkhäuser Verlag, Basel, 1994, pp.369-396.
MR 1320555
[11] Rösler M.:
Bessel-type signed hypergroups on $\Bbb R$. Probability Measures on Groups and Related Structures XI, Proceedings, Oberwollach, 1994 (H. Heyer and A. Mukherjea, Eds.), World Sci. Publishing, Singapore, 1995.
MR 1414942