[1] Abbassi K.M.T., Sarih M.:
On natural metrics on tangent bundles of Riemannian manifolds. to appear in Arch. Math. (Brno).
MR 2142144 |
Zbl 1114.53015
[2] Abbassi K.M.T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold. preprint.
[3] Abbassi K.M.T., Sarih M.:
On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds. to appear in Differential Geom. Appl. (2004).
MR 2106375 |
Zbl 1068.53016
[4] Calvo M. del C., Keilhauer G.G.R:
Tensor fields of type $(0,2)$ on the tangent bundle of a Riemannian manifold. Geom. Dedicata 71 (2) (1998), 209-219.
MR 1629795
[5] Dombrowski P.:
On the geometry of the tangent bundle. J. Reine Angew. Math. 210 (1962), 73-82.
MR 0141050 |
Zbl 0105.16002
[6] Kobayashi S., Nomizu K.:
Foundations of Differential Geometry. Interscience Publishers, New York (I, 1963 and II, 1967).
MR 0152974 |
Zbl 0526.53001
[7] Kolář I., Michor P.W., Slovák J.:
Natural Operations in Differential Geometry. Springer, Berlin, 1993.
MR 1202431
[8] Kowalski O., Sekizawa M.:
Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1-29.
MR 0974641 |
Zbl 0656.53021
[9] Krupka D., Janyška J.:
Lectures on Differential Invariants. University J.E. Purkyně, Brno, 1990.
MR 1108622
[10] Nijenhuis A.:
Natural bundles and their general properties. in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, pp.317-334.
MR 0380862 |
Zbl 0246.53018
[11] Sasaki S.:
On the differential geometry of tangent bundles of Riemannian manifolds. Tohôku Math. J., I, 10 (1958), 338-354 II, 14 (1962), 146-155.
MR 0112152 |
Zbl 0109.40505
[12] Willmore T.J.:
An Introduction to Differential Geometry. Oxford Univ. Press, Oxford, 1959.
MR 0159265 |
Zbl 0086.14401
[13] Yano K., Ishihara S.:
Tangent and Cotangent Bundles: Differential Geometry. Marcel Dekker Inc., New York, 1973.
MR 0350650 |
Zbl 0262.53024