Previous |  Up |  Next

Article

Keywords:
$K$C-space; weaker topology
Summary:
In this paper we show that a minimal space in which compact subsets are closed is countably compact. This answers a question posed in [1].
References:
[1] Alas O.T., Wilson R.G.: Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set. Comment. Math. Univ. Carolinae 43.4 (2002), 641-652. MR 2045786 | Zbl 1090.54015
[2] Fleissner W.G.: A $T_B$-space which is not Katětov $T_B$. Rocky Mountain J. Math. 10 (1980), 661-663. MR 0590229 | Zbl 0448.54021
[3] Hewitt E.: A problem of set theoretic topology. Duke Math. J. 10 (1943), 309-333. MR 0008692 | Zbl 0060.39407
[4] Larson R.: Complementary topological properties. Notices AMS 20 (1973), 176.
[5] Ramanathan A.: Minimal bicompact spaces. J. Indian Math. Soc. 19 (1948), 40-46. MR 0028010 | Zbl 0041.51502
[6] Smythe N., Wilkins C.A.: Minimal Hausdorff and maximal compact spaces. J. Austral. Math. Soc. 3 (1963), 167-177. MR 0154254 | Zbl 0163.17201
[7] Tong H.: Minimal bicompact spaces. Bull. Amer. Math. Soc. 54 (1948), 478-479.
Partner of
EuDML logo