Previous |  Up |  Next

Article

Keywords:
differential quotients; holomorphic extensions
Summary:
Let $K\subseteq\Bbb C$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\Bbb C$ and $f:K\to E$ a map. In this note we give a necessary and sufficient condition --- in terms of differential quotients --- for $f$ to have a holomorphic extension on a neighborhood of $K$.
References:
[1] Bochnak J., Siciak J.: Analytic functions in topological spaces. Studia Math. (1971), 39 77-112. MR 0313811
[2] Dales H.G., Davie A.: Quasianalytic Banach function algebras. J. Funct. Anal. (1973), 13 28-50. MR 0343038 | Zbl 0254.46027
[3] Grothendieck A.: Sur certains espaces de fonctions holomorphes. I-II. J. Reine Angew. Math. (1953), 192 35-64, 77-95. MR 0058865 | Zbl 0051.08704
[4] Kriegl A., Michor P.: The convenient setting of global analysis. Mathematical Surveys and Monograps, 53 (Chapter III), American Mathematical Society, Providence, RI, 1997. MR 1471480 | Zbl 0889.58001
[5] Malgrange B.: Ideals of Differentiable Functions. Oxford Univ. Press, London, 1966. MR 0212575 | Zbl 0177.18001
[6] Tougeron J.C.: Idéaux de fonctions différentiables. Ergebrisse 71, Springer, Heidelberg, 1972. MR 0440598 | Zbl 0251.58001
Partner of
EuDML logo