Article
Keywords:
differential quotients; holomorphic extensions
Summary:
Let $K\subseteq\Bbb C$ be a perfect compact set, $E$ a quasi-complete locally convex space over $\Bbb C$ and $f:K\to E$ a map. In this note we give a necessary and sufficient condition --- in terms of differential quotients --- for $f$ to have a holomorphic extension on a neighborhood of $K$.
References:
[1] Bochnak J., Siciak J.:
Analytic functions in topological spaces. Studia Math. (1971), 39 77-112.
MR 0313811
[2] Dales H.G., Davie A.:
Quasianalytic Banach function algebras. J. Funct. Anal. (1973), 13 28-50.
MR 0343038 |
Zbl 0254.46027
[3] Grothendieck A.:
Sur certains espaces de fonctions holomorphes. I-II. J. Reine Angew. Math. (1953), 192 35-64, 77-95.
MR 0058865 |
Zbl 0051.08704
[4] Kriegl A., Michor P.:
The convenient setting of global analysis. Mathematical Surveys and Monograps, 53 (Chapter III), American Mathematical Society, Providence, RI, 1997.
MR 1471480 |
Zbl 0889.58001
[6] Tougeron J.C.:
Idéaux de fonctions différentiables. Ergebrisse 71, Springer, Heidelberg, 1972.
MR 0440598 |
Zbl 0251.58001