Previous |  Up |  Next

Article

Keywords:
implicit integral equations; discontinuity; lower semicontinuous multifunctions; operator inclusions; selections
Summary:
We deal with the implicit integral equation $$ h(u(t))=f(\,t\,,\int_Ig(t,z)\,u(z)\,dz) \hbox{ for a.a. } t\in I, $$ where $I:=[0,1]$ and where $f:I\times [0,\lambda]\to{\Bbb R}$, $g:I\times I\to[0,+\infty[$ and $h:\,]\,0,+\infty\,[\,\to {\Bbb R}$. We prove an existence theorem for solutions $u\in L^s(I)$ where the contituity of $f$ with respect to the second variable is not assumed.
References:
[1] Artstein Z., Prikry K.: Caratheodory selections and the Scorza Dragoni property. J. Math. Anal. Appl. 127 (1987), 540-547. MR 0915076 | Zbl 0649.28011
[2] Aubin J.P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston, 1990. MR 1048347 | Zbl 1168.49014
[3] Banas J., Knap Z.: Integrable solutions of a functional-integral equation. Rev. Mat. Univ. Complut. Madrid 2 (1989), 31-38. MR 1012104 | Zbl 0679.45003
[4] Cammaroto F., Cubiotti P.: Implicit integral equations with discontinuous right-hand side. Comment. Math. Univ. Carolinae 38 (1997), 241-246. MR 1455490 | Zbl 0886.47031
[5] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. Springer-Verlag, Berlin, 1977. MR 0467310 | Zbl 0346.46038
[6] Cubiotti P.: Non-autonomous vector integral equations with discontinuous right-hand side. Comment. Math. Univ. Carolinae 42 (2001), 319-329. MR 1832150 | Zbl 1055.45004
[7] Emmanuele G.: About the existence of integrable solutions of a functional-integral equation. Rev. Mat. Univ. Complut. Madrid 4 (1991), 65-69. MR 1142550 | Zbl 0746.45004
[8] Emmanuele G.: Integrable solutions of a functional-integral equation. J. Integral Equations Appl. 4 (1992), 89-94. MR 1160090 | Zbl 0755.45005
[9] Engelking R.: Theory of Dimensions, Finite and Infinite. Heldermann-Verlag, 1995. MR 1363947 | Zbl 0872.54002
[10] Fečkan M.: Nonnegative solutions of nonlinear integral equations. Comment. Math. Univ. Carolinae 36 (1995), 615-627. MR 1378685
[11] Hewitt E., Stromberg K.: Real and Abstract Analysis. Springer-Verlag, Berlin, 1965. MR 0367121 | Zbl 0307.28001
[12] Himmelberg C.J., Van Vleck F.S.: Lipschitzian generalized differential equations. Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. MR 0340692 | Zbl 0289.49009
[13] Kantorovich L.V., Akilov G.P.: Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1964. MR 0213845 | Zbl 0127.06104
[14] Klein E., Thompson A.C.: Theory of Correspondences. John Wiley and Sons, New York, 1984. MR 0752692 | Zbl 0556.28012
[15] Kucia A.: Scorza Dragoni type theorems. Fund. Math. 138 (1991), 197-203. MR 1121606 | Zbl 0744.28011
[16] Lang S.: Real and Functional Analysis. Springer-Verlag, New York, 1993. MR 1216137 | Zbl 0831.46001
[17] Naselli Ricceri O., Ricceri B.: An existence theorem for inclusions of the type $\Psi(u)(t)\in $ $F(t,\Phi(u)(t))$ and application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. MR 1116184
[18] Ricceri B.: Sur la semi-continuitè infèrieure de certaines multifonctions. C.R. Acad. Sci. Paris 294 (1982), 265-267. MR 0653748 | Zbl 0483.54010
[19] Saint Raymond J.: Riemann-measurable selections. Set Valued Anal. 2 (1994), 481-485. MR 1304050 | Zbl 0851.54021
[20] Scorza Dragoni G.: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile. Rend. Sem. Mat. Univ. Padova 17 (1948), 102-106. MR 0028385 | Zbl 0032.19702
[21] Villani A.: On Lusin's condition for the inverse function. Rend. Circ. Mat. Palermo 33 (1984), 331-335. MR 0779937 | Zbl 0562.26002
Partner of
EuDML logo