Previous |  Up |  Next

Article

Keywords:
Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
Summary:
Let $G$ be a finite group and $C_2$ the cyclic group of order $2$. Consider the $8$ multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i$, $j$, $k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above $8$ multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i, j\in C_2$. We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojt\v{e}chovsk'y: On the uniqueness of loops $M(G,2)$.
References:
[1] Burn R.P.: Finite Bol loops. Math. Proc. Cambridge Philos. Soc. 84 (1978), 3 377-385. MR 0492030 | Zbl 0385.20043
[2] Chein O.: Moufang loops of small order. Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). MR 0466391 | Zbl 0378.20053
[3] Chein O., Pflugfelder H.O.: The smallest Moufang loop. Arch. Math. 22 (1971), 573-576. MR 0297914 | Zbl 0241.20061
[4] Drápal A.: How far apart can the group multiplication tables be?. European Journal of Combinatorics 13 (1992), 335-343. MR 1181074
[5] Drápal A.: Non-isomorphic $2$-groups coincide at most in three quarters of their multiplication tables. European Journal of Combinatorics 21 (2000), 301-321. MR 1750166
[6] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables. submitted.
[7] Goodaire E.G., May S., Raman M.: The Moufang Loops of Order less than $64$. Nova Science Publishers, 1999. MR 1689624 | Zbl 0964.20043
[8] Nagy G.P., Vojtěchovský P.: LOOPS. a package for GAP 4.3. Download GAP at http://www-gap.dcs.st-and.ac.uk/ gap. Download a beta version of LOOPS at http://www.math.du.edu/loops/loops.html
[9] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Sigma series in pure mathematics 7, Heldermann Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[10] Rotman J.J.: The Theory of Groups: An Introduction. Allyn and Bacon, Inc., 1965. MR 0204499 | Zbl 0262.20001
[11] Vojtěchovský P.: On the uniqueness of loops $M(G,2)$. Comment. Math. Univ. Carolinae 44 (2003), 4 629-365. MR 2062879 | Zbl 1101.20047
[12] Vojtěchovský P.: The smallest Moufang loop revisited. Results in Mathematics 44 (2003), 189-193. MR 2011917 | Zbl 1050.20046
Partner of
EuDML logo