Previous |  Up |  Next

Article

Keywords:
quasigroup; association scheme; permutation character
Summary:
Each homogeneous space of a quasigroup affords a representation of the Bose-Mesner algebra of the association scheme given by the action of the multiplication group. The homogeneous space is said to be faithful if the corresponding representation of the Bose-Mesner algebra is faithful. In the group case, this definition agrees with the usual concept of faithfulness for transitive permutation representations. A permutation character is associated with each quasigroup permutation representation, and specialises appropriately for groups. However, in the quasigroup case the character of the homogeneous space determined by a subquasigroup need not be obtained by induction from the trivial character on the subquasigroup. The number of orbits in a quasigroup permutation representation is shown to be equal to the multiplicity with which its character includes the trivial character.
References:
[1] Barnsley M.F.: Fractals Everywhere. Academic Press, San Diego, CA, 1988. MR 0977274 | Zbl 0784.58002
[2] Chari V., Pressley A.N.: A Guide to Quantum Groups. Cambridge University Press, Cambridge, 1994. MR 1300632 | Zbl 0839.17010
[3] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups. Eur. J. Comb. 5 (1984), 43-50. MR 0746044 | Zbl 0537.20042
[4] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups II: induced characters. Eur. J. Comb. 7 (1986), 131-137. MR 0856325 | Zbl 0599.20110
[5] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups III: quotients and fusion. Eur. J. Comb. 10 (1989), 47-56. MR 0977179 | Zbl 0667.20053
[6] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups IV: products and superschemes. Eur. J. Comb. 10 (1989), 257-263. MR 1029172 | Zbl 0669.20053
[7] Johnson K.W., Smith J.D.H.: Characters of finite quasigroups V: linear characters. Eur. J. Comb. 10 (1989), 449-456. MR 1014553 | Zbl 0679.20059
[8] Johnson K.W., Smith J.D.H., Song S.Y.: Characters of finite quasigroups VI: critical examples and doubletons. Eur. J. Comb. 11 (1990), 267-275. MR 1059557 | Zbl 0704.20056
[9] Mack G., Schomerus V.: Conformal field algebras with quantum symmetry from the theory of superselection sectors. Comm. Math. Phys. 134 (1990), 139-196. MR 1079804 | Zbl 0715.17028
[10] Penrose P.: A generalised inverse for matrices. Proc. Cambridge. Phil. Soc. 51 (1955), 406-413. MR 0069793
[11] Smith J.D.H.: Centraliser rings of multiplication groups on quasigroups. Math. Proc. Cambridge Phil. Soc. 79 (1976), 427-431. MR 0399333 | Zbl 0335.20035
[12] Smith J.D.H.: Quasigroup actions: Markov chains, pseudoinverses, and linear representations. Southeast Asia Bull. Math. 23 (1999), 719-729. MR 1810836 | Zbl 0944.20059
[13] Smith J.D.H.: Quasigroup homogeneous spaces and linear representations. J. Algebra 241 (2001), 193-203. MR 1838850 | Zbl 0994.20054
[14] Smith J.D.H.: A coalgebraic approach to quasigroup permutation representations. Algebra Universalis 48 (2002), 427-438. MR 1967091 | Zbl 1068.20070
Partner of
EuDML logo