[1] Adams P., Bean R., Khodkar A.:
A census of critical sets in the latin squares of order at most six. Ars Combin. 68 (2003), 203-223.
MR 1991049 |
Zbl 1072.05511
[2] Adams P., Khodkar A.:
Smallest critical sets for the latin squares of order six and seven. J. Combin. Math. Combin. Computing. 67 (2001), 225-237.
MR 1834445
[3] Bates J.A., van Rees G.H.J.:
The size of the smallest strong critical set in a latin square. Ars Combin. 53 (1999), 73-83.
MR 1724489
[4] Bate J.A., van Rees G.H.J.:
Minimal and near-minimal critical sets in back circulant latin squares. Australas. J. Combinatorics 27 (2003), 47-62.
MR 1955387 |
Zbl 1024.05014
[5] Cavenagh N.J.:
Latin trade algorithms and the smallest critical set in a latin square. J. Autom. Lang. Combin. 8 (2003), 567-578.
MR 2069074 |
Zbl 1052.05019
[6] Cavenagh N.J.:
The size of the smallest latin trade in a back circulant latin square. Bull. Inst. Combin. Appl. 38 (2003), 11-18.
MR 1977014 |
Zbl 1046.05015
[7] Cavenagh N.J.: The size of the smallest critical set in the back circulant latin square. submitted.
[8] Cavenagh N.J., Donovan D., Drápal A.: $3$-homogeneous latin trades. submitted.
[9] Conway J.C., Sloane N.J.:
Sphere Packings, Lattices and Groups. New York, Springer-Verlag, 1998.
Zbl 0915.52003
[10] Dénes J., Keedwell A.D.:
Latin Squares and Their Applications. English Universities Press, London, 1974.
MR 0351850
[11] Donovan D., Howse A., Adams P.:
A discussion of latin interchanges. J. Comb. Math. Comb. Comput. 23 (1997), 161-182.
MR 1432756 |
Zbl 0867.05010
[12] Donovan D., Mahmoodian E.S.:
An algorithm for writing any latin interchange as the sum of intercalates. Bull. Inst. Combin. Appl. 34 (2002), 90-98.
MR 1880972
[13] Drápal A.:
On a planar construction of quasigroups. Czechoslovak Math. J. 41 (1991), 538-548.
MR 1117806
[14] Drápal A.:
Hamming distances of groups and quasi-groups. Discrete Math. 235 (2001), 189-197.
MR 1829848 |
Zbl 0986.20065
[15] Drápal A.: Geometry of latin trades. manuscript circulated at the conference Loops'03, Prague 2003.
[16] Drápal, Kepka T.:
Exchangeable Groupoids I. Acta Univ. Carolinae - Math. Phys. 24 (1983), 57-72.
MR 0733686
[17] Drápal, Kepka T.:
Exchangeable Groupoids II. Acta Univ. Carolinae - Math. Phys. 26 (1985), 3-9.
MR 0830261
[18] Drápal, Kepka T.:
On a distance of groups and latin squares. Comment. Math. Univ. Carolinae 30 (1989), 621-626.
MR 1045889
[19] Hedayat A.S.:
The theory of trade-off for $t$-designs. in ``Coding theory and design theory, Part II'', IMA Vol. Math. Appl. 21, Springer, NY, 1990.
MR 1056530 |
Zbl 0721.05008
[20] Horak P., Aldred R.E.L., Fleischner H.:
Completing Latin squares: critical sets. J. Combin. Des. 10 (2002), 419-432.
MR 1932121 |
Zbl 1025.05011
[21] Keedwell A.D.:
Critical sets and critical partial latin squares. in ``Proc. Third China-USA International Conf. on Graph Theory, Combinatorics, Algorithms and Applications'', World Sci. Publishing, NJ, 1994.
MR 1313960
[22] Keedwell A.D.:
Critical sets for latin squares, graphs and block designs: A survey. Congr. Numer. 113 (1996), 231-245.
MR 1393712 |
Zbl 0955.05019
[23] Khodkar A.:
On smallest critical sets for the elementary abelian $2$-group. Utilitas Math. 54 (1998), 45-50.
MR 1658157 |
Zbl 0922.05012
[24] Lütkepohl H.:
Handbook of Matrices. Chichester, John Wiley and Sons, 1996.
MR 1433592
[25] Street A.P.:
Trades and defining sets. in: C.J. Colbourn and J.H. Dinitz, Eds., CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL., 1996, pp.474-478.
Zbl 0847.05011