Previous |  Up |  Next

Article

Keywords:
$C_p(X)$; space of ordinals; Lindelöf space
Summary:
It is shown that if $X$ is a first-countable countably compact subspace of ordinals then $C_p(X)$ is Lindelöf. This result is used to construct an example of a countably compact space $X$ such that the extent of $C_p(X)$ is less than the Lindelöf number of $C_p(X)$. This example answers negatively Reznichenko's question whether Baturov's theorem holds for countably compact spaces.
References:
[ARH] Arhangelskii A.: Topological Function Spaces. Math. Appl., vol. 78, Kluwer Academic Publisher, Dordrecht, 1992. MR 1144519
[ASA] Asanov M.O.: On cardinal invariants of function spaces. Modern Topology and Set Theory, Igevsk, (2), 1979, 8-12.
[BAT] Baturov D.: On subspaces of function spaces. Vestnik MGU, Mat. Mech. 4 (1987), 66-69. MR 0913076 | Zbl 0665.54004
[BUZ] Buzyakova R.: Hereditary D-property of Function Spaces Over Compacta. submitted to Proc. Amer. Math. Soc. MR 2073321 | Zbl 1064.54029
[DOU] van Douwen E.K.: Simultaneous extension of continuous functions. Thesis, Free University, Amsterdam, 1975.
[ENG] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. MR 1039321 | Zbl 0684.54001
[NAH] Nahmanson L.B.: Lindelöfness in function spaces. Fifth Teraspol Symposium on Topology and its Applications, Kishinev, 1985, p.183.
Partner of
EuDML logo