[1] Ambrosetti A., Azorero J.G., Peral I.:
Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137 (1996), 219-242.
MR 1383017 |
Zbl 0852.35045
[2] Ambrosetti A., Azorero J.G., Peral I.:
Existence and multiplicity results for some nonlinear elliptic equations: a survey. Rend. Matem., Ser. VII, 20 (2000), 167-198.
MR 1823096 |
Zbl 1011.35049
[3] Ambrosetti A., Brezis H., Cerami G.:
Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543.
MR 1276168 |
Zbl 0805.35028
[4] Ambrosetti A., Rabinowitz P.:
Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381.
MR 0370183 |
Zbl 0273.49063
[5] Anane A.:
Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C.R.A.S. Paris Série I 305 (1987), 725-728.
MR 0920052 |
Zbl 0633.35061
[6] Azorero J.G., Alonso I.P.:
Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43 3 (1994), 941-957.
MR 1305954 |
Zbl 0822.35048
[7] Azorero J.G., Alonso I.P., Manfredi J.J.:
Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Comm. Contemp. Math. 2 3 (2000), 385-404.
MR 1776988
[8] Boccardo L., Escobedo M., Peral I.:
A Dirichlet problem involving critical exponents. Nonlinear Anal. 24 (1995), 11 1639-1648.
MR 1328589 |
Zbl 0828.35042
[9] Brezis H., Nirenberg L.:
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437-477.
MR 0709644 |
Zbl 0541.35029
[10] Brezis H., Nirenberg L.:
$H^{1}$ versus $C^{1}$ local minimizers. C.R.A.S. Paris Série I 317 (1993), 465-472.
MR 1239032
[11] Drábek P., Hernandez J.:
Existence and uniqueness of positive solutions for some quasilinear elliptic problems. Nonlinear Anal. 44 2 (2001), 189-204.
MR 1816658 |
Zbl 0991.35035
[12] Ghoussoub N., Preiss D.:
A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 5 (1989), 321-330.
MR 1030853 |
Zbl 0711.58008
[13] Guedda M., Veron L.:
Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13 8 (1989), 879-902.
MR 1009077 |
Zbl 0714.35032
[14] Ladyzhenskaya O., Uraltseva N.:
Linear and Quasilinear Elliptic Equations. Academic Press, 1968.
MR 0244627
[15] Lieberman G.:
Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), 1203-1219.
MR 0969499 |
Zbl 0675.35042
[16] Moser J.:
A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13 (1960), 457-478.
MR 0170091 |
Zbl 0111.09301
[17] Sattinger D.H.:
Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972), 979-1000.
MR 0299921 |
Zbl 0223.35038
[18] Vázquez J.L.:
A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984), 191-202.
MR 0768629