Previous |  Up |  Next

Article

Keywords:
strongly normal in; normal; $\gamma$-paracompact; product spaces; \newline weak $C$-embedding
Summary:
Arhangel'ski\u{\i} defines in [Topology Appl. 70 (1996), 87--99], as one of various notions on relative topological properties, strong normality of $A$ in $X$ for a subspace $A$ of a topological space $X$, and shows that this is equivalent to normality of $X_A$, where $X_A$ denotes the space obtained from $X$ by making each point of $X \setminus A$ isolated. In this paper we investigate for a space $X$, its subspace $A$ and a space $Y$ the normality of the product $X_A \times Y$ in connection with the normality of $(X\times Y)_{(A\times Y)}$. The cases for paracompactness, more generally, for $\gamma$-paracompactness will also be discussed for $X_A\times Y$. As an application, we prove that for a metric space $X$ with $A \subset X$ and a countably paracompact normal space $Y$, $X_A \times Y$ is normal if and only if $X_A \times Y$ is countably paracompact.
References:
[1] Alas O.T.: On a characterization of collectionwise normality. Canad. Math. Bull. 14 (1971), 13-15. MR 0296886 | Zbl 0209.53901
[2] Arhangel'skiĭ A.V.: Relative topological properties and relative topological spaces. Topology Appl. 70 (1996), 87-99. MR 1397067
[3] Bing R.H.: Metrization of topological spaces. Canad. Math. J. 5 (1951), 175-186. MR 0043449 | Zbl 0042.41301
[4] Burke D.K., Pol R.: Products of Michael spaces and completely metrizable spaces. Proc. Amer. Math. Soc. 129 (2000), 1535-1544. MR 1712941
[5] Costantini C., Marcone A.: Extensions of functions which preserve the continuity on the original domain. Topology Appl. 103 (2000), 131-153. MR 1758790 | Zbl 0986.54025
[6] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[7] Hoshina T.: Products of normal spaces with Lašnev spaces. Fund. Math. 124 (1984), 143-153. MR 0774506 | Zbl 0567.54006
[8] Hoshina T.: Normality of product spaces. II, in K. Morita and J. Nagata, eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.121-160. MR 1053195 | Zbl 0699.54004
[9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces. Topology Appl. 125 (2002), 233-247. MR 1933574 | Zbl 1013.54006
[10] Ishii T.: On product spaces and product mappings. J. Math. Soc. Japan 18 (1966), 166-181. MR 0193610 | Zbl 0151.29901
[11] Kodama Y.: On subset theorems and the dimension of products. Amer. J. Math. 106 (1969), 486-498. MR 0243517 | Zbl 0183.27702
[12] Michael E.: The product of a normal space and a metric space need not be normal. Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 0152985 | Zbl 0114.38904
[13] Morita K.: Products of normal spaces with metric spaces. {rm II}, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 8 (1962), 87-92. MR 0166761 | Zbl 0121.39402
[14] Morita K.: Note on products of normal spaces with metric spaces. unpublished.
[15] Morita K.: On the dimension of the product of topological spaces. Tsukuba J. Math. 1 (1977), 1-6. MR 0474230 | Zbl 0403.54021
[16] Rudin M.E., Starbird M.: Products with a metric factor. General Topology Appl. 5 (1975), 235-348. MR 0380709 | Zbl 0305.54010
[17] Vaughan J.E.: Non-normal products of $ømega_\mu$-metrizable spaces. Proc. Amer. Math. Soc. 51 (1975), 203-208. MR 0370464
Partner of
EuDML logo