Previous |  Up |  Next

Article

Keywords:
smooth blocks; generalized Bochner-Riesz means
Summary:
We investigate generalized Bochner-Riesz means at the critical index on spaces generated by smooth blocks and give some approximation theorems.
References:
[1] Stein E.M.: On limits of sequences of operators. Ann. of Math. 74 (1961), 140-170. MR 0125392 | Zbl 0103.08903
[2] Lu S.Z., Wang S.M.: Space generated by smooth blocks. Constructive Approximation 8 (1992), 331-341. MR 1164073
[3] Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, 1971. MR 0290095 | Zbl 0281.44003
[4] Stein E.M.: An $H^1$ function with non-summable Fourier expansion. Lecture Notes in Math. 992, 1983, pp.193-200. MR 0729354
[5] Lu S.Z., Taibleson M.H., Weiss G.: On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series. Lecture Notes in Math. 908, 1982, pp.311-318. MR 0654197 | Zbl 0514.42009
[6] Zheng X.: Chinese Sci. Bull. (in Chinese) 29 21 (1984), 1342. Zbl 0612.55022
[7] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, 1970. MR 0304972 | Zbl 0232.42007
[8] Lu S.Z., Wang K.Y.: Bochner-Riesz Means. Publishing House of Beijing Normal University, 1988. Zbl 1127.41306
[9] Chen T.: Generalized Bochner-Riesz Means of Fourier Integrals. International Series of Numerical Mathematics, Vol. 90, Birkhäuser Verlag, Basel, 1989, pp. 87-94. MR 1034298 | Zbl 0682.42008
[10] Lu S.Z., Taibleson M.H., Weiss G.: Spaces generated by blocks. Publishing House of Beijing Normal University, 1989. Zbl 0591.42004
Partner of
EuDML logo