Previous |  Up |  Next

Article

Keywords:
biharmonic function; finely biharmonic function; approximation of continuous functions on compact sets
Summary:
We give a characterization of functions that are uniformly approximable on a compact subset $K$ of $\Bbb R^n$ by biharmonic functions in neighborhoods of $K$.
References:
[1] Constantinescu C., Cornea A.: Potential Theory on Harmonic Spaces. Springer Verlag, Heidelberg, 1972. MR 0419799 | Zbl 0248.31011
[2] Debiard A., Gaveau B.: Potentiel fin et algèbre de fonctions analytiques, I. J. Funct. Anal. 16 (1974), 289-304. MR 0380426
[3] El Kadiri M.: Représentation intégrale dans le cadre de la théorie axiomatique des fonctions biharmoniques. Rev. Roumaine Math. Pures Appl. 42 (1997), 7-8, 579-589. MR 1650389
[4] El Kadiri M.: Fonctions finement biharmoniques. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 24 (2000), 43-62. MR 1827006
[5] Fuglede B.: Finely harmonic functions. Lecture Notes in Math. 289, Springer, Berlin-Heidelberg-New York, 1972. MR 0450590 | Zbl 0248.31010
[6] Fuglede B.: On the mean value property of finely harmonic and finely hyperharmonic functions. Aequationes Math. 39 (1990), 198-203. MR 1045667 | Zbl 0709.31002
[7] Gauthier P.M., Ladouceur S.: Uniform approximation and fine potential theory. J. Approx. Theory 72.2 (1993), 138-140. MR 1204136 | Zbl 0782.31002
[8] Helms L.L.: Introduction to Potential Theory. Wiley-Interscience, 1969. MR 0261018 | Zbl 0188.17203
[9] Hervé R.M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel. Ann. Inst. Fourier 12 (1962), 415-517. MR 0139756
[10] Lyons T.J.: Cones of lower semicontinuous functions and a characterization of finely hyperharmonic functions. Math. Ann. 261 (1982), 293-297. MR 0679790
[11] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques. 1e section, Ann. Inst. Fourier 26.1 (1975), 35-98. Zbl 0295.31006
[12] Smyrnelis E.P.: Axiomatique des fonctions biharmoniques. 2e section, Ann. Inst. Fourier 26.3 (1976), 1-47. MR 0477101
Partner of
EuDML logo