Previous |  Up |  Next

Article

Keywords:
Lyapunov measures; effect algebras; modular functions
Summary:
We prove a Lyapunov type theorem for modular measures on lattice ordered effect algebras.
References:
[1] Avallone A.: Lattice uniformities on orthomodular structures. Math. Slovaca 51 (2001), 4 403-419. MR 1864109 | Zbl 1015.28014
[2] Avallone A.: Liapunov modular functions. submitted.
[3] Avallone A.: Separating points of measures on effect algebras. preprint. MR 2357812 | Zbl 1150.28009
[4] Avallone A., Basile A.: On a Marinacci uniqueness theorem for measures. J. Math. Anal. Appl., to appear. Zbl 1052.28011
[5] Barbieri G.: Lyapunov's theorem for measures on D-posets. Internat. J. Theoret. Phys., to appear. MR 2108298 | Zbl 1081.81007
[6] Beltrametti E.G., Cassinelli G.: The Logic of Quantum Mechanics. Addison-Wesley Publishing Co., Reading, Mass., 1981. MR 0635780 | Zbl 0595.03062
[7] Bennett M.K., Foulis D.J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 10 (1994), 1331-1352. MR 1304942
[8] Bennett M.K., Foulis D.J.: Phi-symmetric effect algebras. Found. Phys. 25 (1995), 12 1699-172. MR 1377109
[9] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Acad. Publ., 1993. Zbl 0804.90145
[10] Chovanec F., Kopka F.: D-posets. Math. Slovaca 44 (1994), 21-34. MR 1290269 | Zbl 0789.03048
[11] de Lucia P., Wright J.D.M.: Group valued measures with the Lyapunoff property. Rend. Circ. Mat. Palermo (2) 40 3 (1991), 442-452. MR 1174242 | Zbl 0765.28011
[12] De Simone A., Navara M., Pták P.: On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolinae 42 (2001), 1 23-30. MR 1825370 | Zbl 1052.06007
[13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Mathematics and its Applications, 516, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000. MR 1861369
[14] Epstein L.G., Zhang J.: Subjective probabilities on subjectively unambiguous events. Econometrica 69 ((2001)), 2 265-306. MR 1819756 | Zbl 1020.91048
[15] Knowles G.: Liapunov vector measures. SIAM J. Control 13 (1975), 294-303. MR 0388216
[16] Weber H.: Uniform lattices I, II. A generalization of topological Riesz spaces and topological Boolean rings; Order continuity and exhaustivity. Ann. Mat. Pura Appl. (4) 160 (1991), 347-370 (1992); (4) 165 (1993), 133-158. MR 1163215
[17] Weber H.: On modular functions. Funct. Approx. Comment. Math. 24 (1996), 35-52. MR 1453447 | Zbl 0887.06011
Partner of
EuDML logo