Article
Keywords:
biharmonic Green functions
Summary:
Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
References:
[1] Anandam V.:
Biharmonic Green functions in a Riemannian manifold. Arab J. Math. Sc. 4 (1998), 39-45.
MR 1679626 |
Zbl 0942.31005
[3] Anandam V.:
Biharmonic classification of harmonic spaces. Rev. Roumaine Math. Pures Appl. 45 (2000), 383-395.
MR 1840160 |
Zbl 0990.31003
[4] Brelot M.:
Fonctions sousharmoniques associées à une mesure. Stud. Cerc. Şti. Mat. Iaşi 2 (1951), 114-118.
MR 0041989 |
Zbl 0081.31601
[5] Brelot M.:
Axiomatique des fonctions harmoniques. Les presses de l'Université de Montréal, 1966.
MR 0247124 |
Zbl 0148.10401
[8] Sario L., Nakai M., Wang C., Chung L.O.:
Classification theory of Riemannian manifolds. Lecture Notes in Math. 605, Springer-Verlag, 1977.
MR 0508005 |
Zbl 0355.31001