Article
Keywords:
star-Lindelöf space; absolutely star-Lindelöf space
Summary:
In this paper, we prove the following two statements: (1) There exists a discretely absolutely star-Lindelöf Tychonoff space having a regular-closed subspace which is not CCC-Lindelöf. (2) Every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented in a Hausdorff (regular, Tychonoff) absolutely star-Lindelöf space as a closed $G_{\delta}$ subspace.
References:
[1] Bonanzinga M.:
Star-Lindelöf and absolutely star-Lindelöf spaces. Questions Answers Gen. Topology 16 (1998), 79-104.
MR 1642032 |
Zbl 0931.54019
[2] Bonanzinga M., Matveev M.V.:
Closed subspaces of star-Lindelöf and related spaces. to appear in East-West J. Math.
MR 1825453 |
Zbl 0997.54035
[3] Bonanzinga M., Matveev M.V.:
Products of star-Lindelöf and related spaces. Houston J. Math. 27 (2001), 45-57.
MR 1843911 |
Zbl 0983.54006
[5] Engelking R.:
General Topology, Revised and completed edition. Heldermann Verlag Berlin (1989).
MR 1039321
[7] Matveev M.V.: A survey on star-covering properties. Topology Atlas preprint No. 330 (1998).
[8] Song Y.-K.:
Remarks on star-Lindelöf spaces. Questions Answers Gen. Topology 20 (2002), 49-51.
MR 1910431 |
Zbl 1006.54032
[9] Song Y.-K., Shi W.-X.:
Closed subspaces of absolutely star-Lindelöf spaces. to appear in Houston J. Math.
MR 2084912
[11] Vaughan J.E.: Absolute countable compactness and property $(a)$. Talk at 1996 Praha symposium on General Topology.