Previous |  Up |  Next

Article

Keywords:
vector lattice; $\sigma$-Dedekind complete vector lattice; Dedekind complete vector lattice; complex $f$-algebra; contractive projection
Summary:
In this paper we give necessary and sufficient conditions in order that a contractive projection on a complex $f$-algebra satisfies Seever's identity.
References:
[1] Bernau S.J., Huijmans C.B.: The order bidual of almost $f$-algebras and $d$-algebras. Trans. Amer. Math. Soc. 347 (1995), 4259-4274. MR 1308002
[2] Beukers F., Huijmans C.B., de Pagter B.: Unital embedding and complexification of $f$-algebras. Math. Z. 183 (1983), 131-144. DOI 10.1007/BF01187219 | MR 0701362
[3] Fremlin D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, 1974. MR 0454575 | Zbl 0273.46035
[4] Friedman Y., Russo B.: Contractive projections on $C_{0}(K)$. Trans. Amer. Math. Soc. 273 (1982), 57-73. MR 0664029
[5] Huijsmans C.B.: The order bidual of lattice ordered algebras II. J. Operator Theory 22 (1989), 277-290. MR 1043728 | Zbl 0763.46004
[6] Huijsmans C.B., de Pagter B.: Averaging operators and positive contractive projections. J. Math. Anal. Appl. 113 (1986), 163-184. DOI 10.1016/0022-247X(86)90340-9 | MR 0826666 | Zbl 0604.47024
[7] Huijsmans C.B., de Pagter B.: Subalgebras and Riesz subspaces of an $f$-algebra. Proc. London Math. Soc. (3) 48 (1984), 161-174. MR 0721777 | Zbl 0534.46010
[8] Huijsmans C.B., de Pagter B.: The order bidual of lattice ordered algebras. J. Funct. Anal. 59 (1984), 41-64. DOI 10.1016/0022-1236(84)90052-1 | MR 0763776 | Zbl 0549.46006
[9] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam, 1971.
[10] Schaefer H.H.: Banach Lattices and Positive Operators. Springer, Berlin, 1974. MR 0423039 | Zbl 0296.47023
[11] Seever G.L.: Nonnegative projections on $C_{0}(X)$. Pacific J. Math. 17 (1966), 159-166. DOI 10.2140/pjm.1966.17.159 | MR 0192356 | Zbl 0137.10002
[12] Triki A.: A note on averaging operators. Contemp. Math. 232 (1999), 345-348. DOI 10.1090/conm/232/03410 | MR 1678346 | Zbl 0946.46006
[13] Triki A.: On algebra homomorphisms in complex almost $f$-algebras, Comment. Math. Univ. Carolinae. 43.1 (2002), 23-31. MR 1903304
[14] Triki A.: When the order bidual of an $f$-algebra has a unit element. Faculté des Sciences de Tunis, preprint 2002.
[15] Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam, 1983. MR 0704021 | Zbl 0519.46001
[16] Wulbert D.E.: Averaging projections. Illinois J. Math. 13 (1969), 689-693. DOI 10.1215/ijm/1256053428 | MR 0256176 | Zbl 0179.18201
Partner of
EuDML logo