[B] Blasco O.:
Weighted Lipschitz spaces defined by a Banach space. García-Cuerva, J. et al., Fourier Analysis and Partial Differential Equations, CRC, 1995, Chapter 7, pp.131-140.
MR 1330235 |
Zbl 0870.46021
[FJW] Frazier M., Jawerth B., Weiss G.:
Littlewood-Paley theory and the study of function spaces. CBMS, Regional Conference Series in Math., No. 79, 1991.
MR 1107300 |
Zbl 0757.42006
[GSV] Gatto A.E., Segovia C., Vági S.:
On fractional differentiation and integration on spaces of homogeneous type. Rev. Mat. Iberoamericana 12 2 (1996), 111-145.
MR 1387588
[GV] Gatto A.E., Vági S.:
On Sobolev spaces of fractional order and $\epsilon$-families of operators on spaces of homogeneous type. Studia Math. 133.1 (1999), 19-27.
MR 1671965
[H] Hartzstein S.I. Acotación de operadores de Calderón-Zygmund en espacios de Triebel-Lizorkin y de Besov generalizados sobre espacios de tipo homogéneo: Thesis, 2000, UNL, Santa Fe, Argentina.
[HV] Hartzstein S.I., Viviani B.E.:
$T1$ theorems on generalized Besov and Triebel-Lizorkin spaces over spaces of homogeneous type. Revista de la Unión Matemática Argentina 42 1 (2000), 51-73.
MR 1852730 |
Zbl 0995.42011
[HS] Han Y.-S., Sawyer E.T.:
Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Memoirs Amer. Math. Soc., Vol. 110, No .530, 1994.
MR 1214968 |
Zbl 0806.42013
[I] Iaffei B.: Espacios Lipschitz generalizados y operadores invariantes por traslaciones. Thesis, UNL, 1996.
[J] Janson S.:
Generalization on Lipschitz spaces and applications to Hardy spaces and bounded mean oscillation. Duke Math. J. 47 (1980), 959-982.
MR 0596123
[MS] Macías R.A., Segovia C.:
Lipschitz functions on spaces of homogeneous type. Adv. Math. 33 (1979), 257-270.
MR 0546295