Previous |  Up |  Next

Article

Keywords:
$D$-space; point-countable base; extent; metrizable space; Lindelöf space
Summary:
It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.
References:
[1] Arens R., Dugundji J.: Remark on the concept of compactness. Portugal. Math. 9 (1950), 141-143. MR 0038642 | Zbl 0039.18602
[2] Arhangel'skii A.V., Buzyakova R.Z.: On some properties of linearly Lindelöf spaces. Topology Proc. 23 (1998), 1-11. MR 1800756 | Zbl 0964.54018
[3] Balogh Z., Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties. Topology Appl. 84 (1998), 91-103. MR 1611277 | Zbl 0991.54032
[4] Boone J.R.: On irreducible spaces, 2. Pacific J. Math. 62.2 (1976), 351-357. MR 0418037
[5] Borges C.R., Wehrly A.C.: A study of $D$-spaces. Topology Proc. 16 (1991), 7-15. MR 1206448 | Zbl 0787.54023
[6] Burke D.K.: Covering properties. in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 9, pp.347-422; North-Holland, Amsterdam, New York, Oxford, 1984. MR 0776628 | Zbl 0569.54022
[7] Buzyakova R.Z.: On $D$-property of strong $\Sigma $-spaces. Comment. Math. Univ. Carolinae 43.3 (2002), 493-495. MR 1920524 | Zbl 1090.54018
[8] de Caux P.: A collectionwise normal, weakly $\theta $-refinable Dowker space which is neither irreducible nor realcompact. Topology Proc. 1 (1976), 66-77. Zbl 0397.54019
[9] Christian U.: Concerning certain minimal cover refinable spaces. Fund. Math. 76 (1972), 213-222. MR 0372818
[10] van Douwen E., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81.2 (1979), 371-377. MR 0547605 | Zbl 0409.54011
[11] van Douwen E.K., Wicke H.H.: A real, weird topology on reals. Houston J. Math. 13.1 (1977), 141-152. MR 0433414
[12] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, 2. Topology Appl. 71.2 (1996), 179-191. MR 1399555
[13] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number. Topology Appl. 114.3 (2001), 285-293. MR 1838327 | Zbl 1012.54002
[14] Michael E., Rudin M.E.: Another note on Eberlein compacts. Pacific J. Math. 72 (1977), 497-499. MR 0478093 | Zbl 0344.54018
[15] Ostaszewski A.J.: Compact $\sigma $-metric spaces are sequential. Proc. Amer. Math. Soc. 68 (1978), 339-343. MR 0467677
[16] Rudin M.E.: Dowker spaces. in: K. Kunen and J. Vaughan, Eds, Handbook of Set-theoretic Topology, Chapter 17, pp.761-780; North-Holland, Amsterdam, New York, Oxford, 1984. MR 0776636 | Zbl 0566.54009
[17] Tkachenko M.G.: On compactness of countably compact spaces having additional structure. Trans. Moscow Math. Soc. 2 (1984), 149-167.
[18] Wicke H.H., Worrell J.M., Jr.: Point-countability and compactness. Proc. Amer. Math. Soc. 55 (1976), 427-431. MR 0400166 | Zbl 0323.54013
[19] Worrell J.M., Wicke H.H.: Characterizations of developable spaces. Canad. J. Math. 17 (1965), 820-830. MR 0182945
[20] Worrell J.M., Jr., Wicke H.H.: A covering property which implies isocompactness. 1. Proc. Amer. Math. Soc. 79.2 (1980), 331-334. MR 0565365
Partner of
EuDML logo