Article
Keywords:
dynamical system; circle map; $\omega$-limit set
Summary:
In this paper we extend results of Blokh, Bruckner, Humke and Sm'{\i}tal [Trans. Amer. Math. Soc. {\bf 348} (1996), 1357--1372] about characterization of $\omega$-limit sets from the class $\Cal{C}(I,I)$ of continuous maps of the interval to the class $\Cal C(\Bbb S,\Bbb S)$ of continuous maps of the circle. Among others we give geometric characterization of $\omega$-limit sets and then we prove that the family of $\omega$-limit sets is closed with respect to the Hausdorff metric.
References:
[1] Alsedà L., Llibre J., Misiurewicz M.:
Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publ., Singapore, 1993.
MR 1255515
[2] Block L.S., Coppel W.A.:
Dynamics in One Dimension. Lecture Notes in Math. 1513, Springer, Berlin, 1992.
MR 1176513 |
Zbl 0746.58007
[3] Blokh A., Bruckner A.M., Humke P.D., Smítal J.:
The space of $ømega $-limit sets of a continuous map of the interval. Trans. Amer. Math. Soc. 348 (1996), 1357-1372.
MR 1348857
[4] Blokh A.M.:
On transitive mappings of one-dimensional ramified manifolds. in Differential-difference Equations and Problems of Mathematical Physics, Inst. Mat. Acad. Sci., Kiev, 1984, pp. 3-9 (Russian).
MR 0884346 |
Zbl 0605.58007
[5] Hric R.:
Topological sequence entropy for maps of the circle. Comment. Math. Univ. Carolinae 41 (2000), 53-59.
MR 1756926 |
Zbl 1039.37007
[6] Pokluda D.:
On the transitive and $ømega$-limit points of the continuous mappings of the circle. Archivum Mathematicum, accepted for publication.
Zbl 1087.37033
[7] Sharkovsky A.N.: The partially ordered system of attracting sets. Soviet Math. Dokl. 7 5 (1966), 1384-1386.