Previous |  Up |  Next

Article

Keywords:
strong $\Sigma$ space; $D$-space
Summary:
It is shown that every strong $\Sigma$ space is a $D$-space. In particular, it follows that every paracompact $\Sigma$ space is a $D$-space.
References:
[1] Arhangelskii A.: private communications. 2001.
[2] Borges C.R., Wehrly A.C.: A study of $D$-spaces. Topology Proc. 16 (1991), 7-15. MR 1206448 | Zbl 0787.54023
[3] Borges C.R., Wehrly A.C.: Another study of $D$-spaces. Questions Answers Gen. Topology 14:1 (1996), 73-76. MR 1384056 | Zbl 0842.54033
[4] Borges C.R., Wehrly A.C.: Correction: another study of $D$-spaces. Questions Answers Gen. Topology 16:1 (1998), 77-78. MR 1614761
[5] DeCaux P.: Yet another property of the Sorgenfrey line. Topology Proc. 6:1 (1981), 31-43. MR 0650479
[6] van Douwen E.K.: Simultaneous extension of continuous functions. Thesis, Free University, Amsterdam, 1975.
[7] van Douwen E.K., Pfeffer W.F.: Some properties of the Sorgenfrey line and related spaces. Pacific J. Math. 81 (1979), 371-377. MR 0547605 | Zbl 0409.54011
[8] van Douwen E.K., Lutzer D.J.: A note on paracompactness in generalized ordered spaces. Proc. Amer. Math. Soc. 125 (1997), 1237-1245. MR 1396999 | Zbl 0885.54023
[9] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. MR 1039321 | Zbl 0684.54001
[10] Fleissner W.G., Stanley A.M.: $D$-spaces. Topology Appl. 114 (2001), 261-271. MR 1838325 | Zbl 0983.54024
Partner of
EuDML logo