Previous |  Up |  Next

Article

Keywords:
holomorphic semigroup; Bernstein function
Summary:
If $(e^{-tA})_{t>0}$ is a strongly continuous and contractive semigroup on a complex Banach space $B$, then $-(-A)^\alpha $, $0<\alpha <1$, generates a holomorphic semigroup on $B$. This was proved by K. Yosida in [7]. Using similar techniques, we present a class $H$ of Bernstein functions such that for all $f\in H$, the operator $-f(-A)$ generates a holomorphic semigroup.
References:
[1] Carasso A., Kato T.: On subordinated holomorphic semigroups. Trans. Amer. Math. Soc. 327 2 (1991), 867-878. MR 1018572 | Zbl 0743.47017
[2] Berg C., Forst G.: Potential Theory on Locally Compact Abelian Groups. Springer Verlag, Ergebnisse der Mathematics, vol. 87, 1975. MR 0481057 | Zbl 0308.31001
[3] Hirsch F.: Domaines d'opérateurs représentés comme intégrales de résolvantes. J. Funct. Anal. 23 3 (1976), 199-217. MR 0428105 | Zbl 0341.47013
[4] Jacob N., Schilling R.L.: Subordination in the sense of S. Bochner: An approach through pseudo differential operators. Math. Nachr. 178 (1996), 199-231. MR 1380710 | Zbl 0923.47023
[5] Lumer G., Paquet L.: Semi-groupes holomorphes et équations d'évolution. C.R. Acad. Sci. Paris Série A 284 (1977), 237-240. MR 0428106 | Zbl 0351.35013
[6] Paquet L.: Semi-groupes holomorphes en norme sup. Séminaire de théorie du potentiel Paris, no. 4, Lecture Notes in Math. 713, 1979.
[7] Yosida K.: Functional Analysis, second edition. Springer Verlag, Berlin-Heidelberg-New York, 1968. MR 0239384
Partner of
EuDML logo