Previous |  Up |  Next

Article

Keywords:
nearly maximal subgroup; near Frattini subgroup; non-near generator; DA-groups; NDA-groups; Richman type; functorial subgroup; Frattini subgroup
Summary:
The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.
References:
[1] Allenby R.B.J.T.: Some remarks on the upper Frattini subgroup of a generalized free product. Houston J. Math. 25 (1999), 3 399-403. MR 1730890 | Zbl 0971.20013
[2] Allenby R.B.J.T.: The existence and location of the near Frattini subgroup in certain generalized free products. Houston J. Math. 26 ((2000)), 3 463-468. MR 1811933 | Zbl 1005.20022
[3] Azarian M.K.: On the near Frattini subgroups of certain groups. Houston J. Math. 20 (1994), 3 555-560. MR 1287995 | Zbl 0817.20028
[4] Azarian M.K.: On the near Frattini subgroup. Group Theory (Granville, OH, 1992), pp.21-29, World Sci. Publishing, River Edge, NJ, 1993. MR 1348887 | Zbl 0896.20019
[5] Azarian M.K.: On the near Frattini subgroup of the generalized free product of finitely generated nilpotent groups. Houston J. Math. 23 (1997), 4 613-615. MR 1687338 | Zbl 0896.20019
[6] Azarian M.K.: On the near Frattini subgroups of amalgamated free products with residual properties. Houston J. Math. 23 (1997), 4 603-612. MR 1687342 | Zbl 0896.20020
[7] Charles B.: Sous-groupes fonctoriels et topologies. Studies on Abelian Groups, Paris, 1968, pp.75-92. MR 0240195
[8] Cutler D.O., Fay T.H.: Radicals of abelian groups. Comm. Algebra 18 (2) (1990), 403-411. MR 1047317 | Zbl 0697.20045
[9] Dlab V.: The Frattini subgroups of abelian groups. Czechoslovak Math. J. 10 (1960), 1-16. MR 0114858 | Zbl 0093.02801
[10] Dugas M., Göbel R.: On radicals and products. Pacific J. Math. 118 (1) (1985), 79-104. MR 0783018
[11] Dugas M., Oxford E.P.: Preradicals induced by torsion-free abelian groups. Comm. Algebra 17 (4) (1989), 981-1002. MR 0990989 | Zbl 0668.20042
[12] Eda K.: Cardinality restrictions on preradicals. Abelian Group Theory (Perth, 1987), Contemp. Math., 87, Amer. Math. Soc., Providence, RI, 1989, pp.277-283. MR 0995283 | Zbl 0687.20049
[13] Eklof P.C.: Set theoretical methods in homological algebra and abelian groups. Les Presses de l'Université de Montréal, 1980. MR 0565449
[14] Fay T.H., Oxford E.P., Walls G.L.: Singly generated socles and radicals. Abelian Group Theory, Lecture Notes Math. 1006, Springer, 1983, pp.671-684. MR 0722659 | Zbl 0522.20039
[15] Fedorov Yu.S.: On infinite groups in which all non-trivial subgroups have finite index. Uspekhi Mat. Nauk 1 /6 (1957), 187-189. MR 0041134
[16] Franciosi S., de Giovanni F.: On groups with many nearly maximal subgroups. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9 (1998), 1 19-23. MR 1669256 | Zbl 0924.20021
[17] Fuchs L.: Infinite Abelian Groups, vol. 1 and 2. Academic Press, New York, London, 1970, 1973.
[18] Göbel R.: On stout and slender groups. J. Algebra 35 (1975), 39-55. MR 0376879
[19] Lennox J.C., Robinson D.J.S.: Nearly maximal subgroups of finitely generated soluble groups. Arch. Math. Basel 38 (1982), 289-295. MR 0658373
[20] Riles J.B.: The near Frattini subgroups of infinite groups. J. Algebra 12 (1969), 155-171. MR 0238962 | Zbl 0182.03702
[21] Riles J.B.: The near Frattini subgroups of direct products of groups. J. London Math. Soc. (2) 8 (1974), 239-244. MR 0347986 | Zbl 0298.20032
[22] Shelah S.: On uncountable abelian groups. Israel J. Math. 32 (4) (1979), 311-330. MR 0571086 | Zbl 0412.20047
[23] Stein K.: Analytische Functionen mehrer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem. Math. Ann. 123 (1951), 201-222. MR 0043219
Partner of
EuDML logo