Previous |  Up |  Next

Article

Keywords:
quasiharmonic fields; Beltrami operator; elliptic partial differential equations; G-convergence
Summary:
A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector fields satisfying $\operatorname{div} B=0$, $\operatorname{curl} E=0$, and coupled by a distorsion inequality. For a given $\Cal F$, we construct a matrix field $\Cal A=\Cal A[B,E]$ such that ${\Cal A} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\Cal A[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.
References:
[1] Astala K.: Recent Connections and Applications of Planar Quasiconformal Mappings. Progr. Math. 168 36-51 (1998). MR 1645796 | Zbl 0908.30019
[2] De Giorgi E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. U.M.I. 4 (1968), 135-137. MR 0227827
[3] De Giorgi E., Spagnolo S.: Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. U.M.I. 8 (1973), 391-411. MR 0348255 | Zbl 0274.35002
[4] Formica M.R.: On the $\Gamma$-convergence of Laplace-Beltrami Operators in the plane. Ann. Acad. Sci. Fenn. Math. 25 (2000), 423-438. MR 1762427 | Zbl 0955.30016
[5] Francfort G.A., Murat F.: Optimal bounds for conduction in two-dimensional, two-phase, Anisotropic media. Non-classical continuum mechanics, R.J. Knops and A.A. Lacey, Eds., London Mathematical Society Lecture Note Series 122, Cambridge, 1987, pp.197-212. MR 0926503 | Zbl 0668.73018
[6] Keller J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964), 548-549. MR 0161559 | Zbl 0129.44001
[7] Koshelev A.I.: Regularity of solutions of quasilinear elliptic systems. Engl.trans.: Russian Math. Survey 33 (1978), 1-52. MR 0510669
[8] Iwaniec T., Sbordone C.: Quasiharmonic fields. Ann. Inst. H. Poincaré-AN 18.5 (2001), 519-572. MR 1849688 | Zbl 1068.30011
[9] John O., Malý J., Stará J.: Nowhere continuous solutions to elliptic systems. Comment. Math. Univ. Carolinae 30.1 (1989), 33-43. MR 0995699
[10] Leonetti F., Nesi V.: Quasiconformal solutions and a conjecture of Milton. J. Math. Pures Appl. 76 (1997), 109-124. MR 1432370
[11] Liusterinik, Sobolev: Elements of Functional Analysis. (1965), Frederick Ungar Publishing Company London.
[12] Marino A., Spagnolo S.: Un tipo di approssimazione dell'operatore $\sum D_i{a_ij}D_j$ con operatori $D_j(b D_j)$. Ann. Scu. Norm. Sup. Pisa 23 (1969), 657-673. MR 0278128
[13] Meyers N.: An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scu. Norm. Pisa 17 (1963), 189-206. MR 0159110
[14] Milton G.W.: Modelling the properties of composites by laminates. in Homogenization and effective moduli of materials and media, Ericksen, Kinderleher, Kohn, Lions, Eds., IMA volumes in mathematics and its applications 1, Springer-Verlag, New York, 1986, pp.150-174. MR 0859415 | Zbl 0631.73011
[15] Morrey: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126-166. MR 1501936 | Zbl 0018.40501
[16] Murat F.: Compacite par Compensation. Ann. Scu. Norm. Pisa 5 (1978), 489-507. MR 0506997 | Zbl 0399.46022
[17] Murat F.: H-convergence. Seminaire d'Analyse Fonctionelle et Numerique, University of Alger, 1977/78. Zbl 0920.35019
[18] Souček J.: Singular solution to linear elliptic systems. Comment. Math. Univ. Carolinae 25 (1984), 273-281. MR 0768815
[19] Spagnolo S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scu. Norm. Sup. Pisa 22 (1968), 571-597. MR 0240443
[20] Spagnolo S.: Some convergence problems. Sympos. Math. 18 (1976), 391-397. MR 0509184 | Zbl 0332.46020
[21] Tartar L.: Homogeneisation et compacite par compensation. Cours Peccot, College de France, 1977. Zbl 0406.35055
[22] Tartar L.: Compensated Compactness and Applications to Partial Differential Equations. ed. by R.J. Knops, Pitman, London, Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV (1979), no. 39, 136-212. MR 0584398 | Zbl 0437.35004
[23] Tartar L.: Convergence d'operateurs differentiels. Analisi Convessa Appl., Roma (1974), 101-104.
Partner of
EuDML logo