Article
Keywords:
extremally disconnected and maximal spaces; semitopological group; Stone-Čech compactification
Summary:
Answering recent question of A.V. Arhangel'skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.
References:
[1] Arhangel'skii A.V.:
On topological and algebraic properties of extremally disconnected semitopological groups. Comment. Math. Univ. Carolinae 42.4 (2000), 803-810.
MR 1800164
[2] Arhangel'skii A.V.:
Groups topologiques extremalement discontinus. C.R. Acad. Sci. Paris 265 (1967), 822-825.
MR 0222207
[3] Hindman N., Strauss D.:
Algebra in the Stone-Čech Compactification: Theory and Applications. Walter de Gruyter, Berlin, 1998.
MR 1642231 |
Zbl 0918.22001
[4] Protasov I.V.:
Filters and topologies on semigroups (in Russian). Mat. Stud. 3 (1994), 15-28.
MR 1692845
[6] Protasov I.V.:
On maximal topologies on groups. Visn. Kyiv. Univ. Ser. Fiz-mat. nauk, no. 3 (1998), 251-253.
MR 1672661
[7] Protasov I.V.:
Indecomposable topologies on groups. Ukrainian Math. J. 50 (1998), 1879-1887.
MR 1721072
[9] Zelenyuk E.G.:
Extremal ultrafilters and topologies on groups (in Russian). Mat. Stud. 14 (2000), 121-140.
MR 1813995