[1] Blažić N., Bokan N., Gilkey P.:
A note on Osserman Lorentzian manifolds. Bull. London Math. Soc. 29 (1997), 227-230.
MR 1426003
[2] Blažić N., Bokan N., Gilkey P., Rakić Z.:
Pseudo-Riemannian Osserman manifolds. J. Balkan Society of Geometers l2 (1997), 1-12.
MR 1662081
[3] Bonome A., Castro R., García-Río E., Hervella L., Vázquez-Lorenzo R.:
Nonsymmetric Osserman indefinite Kähler manifolds. Proc. Amer. Math. Soc. 126 (1998), 2763-2769.
MR 1476121
[4] Chi Q.-S.:
A curvature characterization of certain locally rank-one symmetric spaces. J. Differential Geom. 28 (1988), 187-202.
MR 0961513 |
Zbl 0654.53053
[5] Dotti I., Druetta M.:
Negatively curved homogeneous Osserman spaces. Differential Geom. Appl. 11 (1999), 163-178.
MR 1712119 |
Zbl 0970.53031
[6] García-Rió E., Kupeli D., Vázquez-Abal M.E.:
On a problem of Osserman in Lorentzian geometry. Differential Geom. Appl. 7 (1997), 85-100.
MR 1441921
[7] García-Rió E., Vázquez-Abal M.E., Vázquez-Lorenzo R.:
Nonsymmetric Osserman pseudo-Riemannian manifolds. Proc. Amer. Math. Soc. 126 (1998),2771-2778.
MR 1476128
[8] Gilkey P.:
Manifolds whose curvature operator has constant eigenvalues at the basepoint. J. Geom. Anal. 4 (1994), 155-158.
MR 1277503 |
Zbl 0797.53010
[9] Gilkey P.:
Algebraic curvature tensors which are $p$ Osserman. to appear in Differential Geom. Appl.
MR 1836275 |
Zbl 1031.53034
[10] Gilkey P.:
Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific, 2002.
MR 1877530 |
Zbl 1007.53001
[11] Gilkey P., Ivanova R.:
The Jordan normal form of Osserman algebraic curvature tensors. Results Math. 40 (2001), 192-204.
MR 1860368 |
Zbl 0999.53014
[12] Gilkey P., Stavrov I.:
Curvature tensors whose Jacobi or Szabó operator is nilpotent on null vectors. Bull. London Math. Soc., to appear.
MR 1924351 |
Zbl 1043.53018
[13] Gilkey P., Stanilov G., Videv V.:
Pseudo-Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial. J. Geom. 62 (1998), 144-153.
MR 1631494 |
Zbl 0906.53046
[14] Gilkey P., Swann A., Vanhecke L.:
Isoparametric geodesic spheres and a conjecture of Osserman regarding the Jacobi operator. Quart. J. Math. Oxford Ser. 46 (1995), 299-320.
MR 1348819
[16] Stanilov G.: Curvature operators based on the skew-symmetric curvature operator and their place in Differential Geometry. preprint, 2000.
[17] Stanilov G., Videv V.:
On Osserman conjecture by characteristical coefficients. Algebras Groups Geom. 12 (1995), 157-163.
MR 1325979 |
Zbl 0827.53042
[18] Stanilov G., Videv V.:
Four-dimensional pointwise Osserman manifolds. Abh. Math. Sem. Univ. Hamburg 68 (1998), 1-6.
MR 1658408 |
Zbl 0980.53058