Previous |  Up |  Next

Article

Keywords:
Miranda-Talenti inequality; nonvariational elliptic equations; Hölder regularity
Summary:
Let $\Omega $ be an open bounded set in $\Bbb R^{n}$ $(n\geq 2)$, with $C^2$ boundary, and $N^{p,\lambda}(\Omega )$ ($1 < p < +\infty $, $0\leq \lambda < n$) be a weighted Morrey space. In this note we prove a weighted version of the Miranda-Talenti inequality and we exploit it to show that, under a suitable condition of Cordes type, the Dirichlet problem: $$ \cases \sum_{i,j=1}^n a_{ij}(x) \frac{\partial ^2 u}{\partial x_i \partial x_j} = f(x) \in N^{p,\lambda }(\Omega) \quad & \text{ in } \Omega \ u=0 & \text{ on } \partial \Omega \endcases $$ has a unique strong solution in the functional space $$ \left\{ u \in W^{2,p} \cap W^{1,p}_o(\Omega ) : \frac{\partial ^2 u}{\partial x_i \partial x_j} \in N^{p,\lambda}(\Omega ), i,j=1,2,\,\ldots, n\right\}. $$
References:
[1] Adams R.A.: Sobolev Spaces. Academic Press Inc., Orlando, 1977. Zbl 1098.46001
[2] Brezis H.: Analisi Funzionale. Liguori Editore, Napoli, 1986.
[3] Campanato S.: Maggiorazioni interpolatorie negli spazi $H^{m,p}_{\lambda}(Ømega)$. Ann. Mat. Pura Appl. Ser. IV LXXV (1967), 261-276. MR 0216284
[4] Campanato S.: Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale. Ann. Scuola. Norm. Sup. Pisa (III) XXI Fasc. IV (1967), 701-707. MR 0224996 | Zbl 0157.42202
[5] Campanato S.: Non variational differential systems. A condition for local existence and uniqueness. Proceedings of the Caccioppoli Conference (1989), Ricerche di Matem., Suppl., XL (1991), 129-140. MR 1306303 | Zbl 0796.35052
[6] Campanato S.: On the condition of nearness between operators. Ann. Mat. Pura Appl. Ser. IV CLXVII (1994), 243-256. MR 1313557 | Zbl 0820.47050
[7] Campanato S.: Attuale formulazione della teoria degli operatori vicini e attuale definizione di operatore ellittico. Le Matematiche LI 2 (1996), 291-298.
[8] Campanato S., Cannarsa P.: Second order nonvariational elliptic systems. Bollettino U.M.I. (5) 17-B (1980), 1365-1394. MR 0770854 | Zbl 0449.35033
[9] Coifman R.R., Fefferman C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51 (1974), 241-250. MR 0358205 | Zbl 0291.44007
[10] Cordes H.O.: Über die erste Rundwertaufgabe bei quasi linearen Differential gleichungen zweiter Ordunung in mehr als zwei Variablen Math. Ann. 131 (1956), 278-312. MR 0091400
[11] Cordes H.O.: Vereinfachter Beweis der Existenz einer Apriori-Holderkonstanten. Math. Ann. 138 (1959), 155-178. MR 0109256
[12] Cordes H.O.: Zero order a priori estimates for solution of elliptic differential equations. Proc. of Symposia in Pure Math. IV, pp.157-166, 1961. MR 0146511
[13] García-Cuerva J., Rubio de Francia J.L.: Weighted Norm Inequalities and Related Topics. North Holland Math. Studies 116, Amsterdam, 1985. MR 0848147
[14] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Math. Studies, vol. 105 Princeton University Press, Princeton, 1983. MR 0717034 | Zbl 0516.49003
[15] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Second Edit., Springer Verlag, 1983. MR 0737190 | Zbl 1042.35002
[16] Giusti E.: Sulla regolarità delle soluzioni di una classe di equazioni ellittiche. Rend. Sem. Matem. Univ. Padova XXXIX (1967), 362-375. MR 0226173 | Zbl 0164.13302
[17] Giusti E.: Equazioni Ellittiche del Secondo Ordine. Pitagora Editrice, Bologna, 1978.
[18] Grisvard P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, 1985. MR 0775683 | Zbl 0695.35060
[19] Guglielmino F.: Nuovi contributi allo studio delle equazioni paraboliche del secondo ordine di tipo non variazionale. Ricerche di Matem. 14 (1965), 124-144. MR 0201832 | Zbl 0141.29301
[20] Koshelev A.I.: Regularity Problem for Quasilinear Elliptic and Parabolic Systems. Springer Verlag, 1995. MR 1442954 | Zbl 0847.35023
[21] Leonardi S.: On the Campanato nearness condition. Le Matematiche 48.1 (1993), 179-181. MR 1283760 | Zbl 0805.47067
[22] Leonardi S.: Remarks on the Regularity of Solutions of Elliptic Systems. Kluwer Academic/Plenum Publishers, pp.325-344, New York, 1999. MR 1727457 | Zbl 0952.35034
[23] Miranda C.: Istituzioni di Analisi Funzionale Lineare. U.M.I. 1978. Zbl 0697.46002
[24] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 | Zbl 0236.26016
[25] Muckenhoupt B., Whedeen R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Amer. Math. Soc. 161 (1971), 249-258. MR 0285938
[26] Murthy M.K.V., Stampacchia G.: Boundary value problems for some degenerate-elliptic operators. Ann. Mat. Pura Appl. Ser. IV 80 (1968), 1-122. MR 0249828 | Zbl 0185.19201
[27] Nečas J.: On the Regularity of Weak Solutions to Nonlinear Elliptic Systems of Partial Differential Equations. Lectures at Scuola Normale Sup. Pisa, 1979.
[28] Nicolosi F.: Problemi parabolici in più variabili. Le Matematiche XXVII 1 (1972), 153-166. MR 0326173 | Zbl 0264.35041
[29] Pucci C.: Equazioni ellittiche con soluzioni in $W^{2,p}$, $p<2$. Convegno sulle Equaz. alle Derivate Parziali, pp.145-148, Bologna, 1967. MR 0271530
[30] Pucci C., Talenti G.: Elliptic (second order) partial differential equations with measurable coefficients and approximating integral equations. Adv. Math. 19 1 (1976), 48-105. MR 0419989
[31] Stein E.M.: Note on singular integrals. Proc. Amer. Math. Soc. 8 (1957), 250-254. MR 0088606 | Zbl 0077.27301
[32] Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, New Jersey, 1970. MR 0290095 | Zbl 0281.44003
[33] Stein E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, 1993. MR 1232192 | Zbl 0821.42001
[34] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton, New Jersey, 1971. MR 0304972 | Zbl 0232.42007
[35] Talenti G.: Sopra una classe di equazioni ellittiche a coefficienti misurabili. Ann. Mat. Pura Appl. LXIX (1965), 285-304. MR 0201816 | Zbl 0145.36602
[36] Talenti G.: Equazioni lineari ellittiche in due variabili. Le Matematiche XXI (1966), 339-376. MR 0204845 | Zbl 0149.07402
[37] Torchinsky A.: Real-variable Methods in Harmonic Analysis. Academic Press Inc., Orlando, 1986. MR 0869816 | Zbl 1097.42002
Partner of
EuDML logo