Article
Keywords:
MAD family; Vietoris topology; continuous selection
Summary:
We show that if $\Cal A$ is an uncountable AD (almost disjoint) family of subsets of $\omega$ then the space $\Psi(\Cal A)$ does not admit a continuous selection; moreover, if $\Cal A$ is maximal then $\Psi(\Cal A)$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
References:
[A{&}al] G. Artico, U. Marconi, J. Pelant, L. Rotter and M. Tkachenko:
Selections and suborderability. preprint.
MR 1971236
[BDS] Balcar B., Dočkálková J., Simon P.:
Almost disjoint families of countable sets. Colloq. Math. Soc. János Bolyai, Finite and Infinite Sets 37 59-88 (1984).
MR 0818228
[vD1] van Douwen E.K.:
Mappings from hyperspaces and convergent sequences. Topology Appl. 34 35-45 (1990).
MR 1035458 |
Zbl 0715.54004
[vD2] van Douwen E.:
The integers and topology. in K. Kunen, J. Vaughn, editors, Handbook of Set Theoretic Topology 111-167 North-Holland (1984).
MR 0776622 |
Zbl 0561.54004
[Ku] Kunen K.:
Set Theory: An Introduction to Independence Proofs. North-Holland Amsterdam (1980).
MR 0597342 |
Zbl 0443.03021
[vMW] van Mill J., Wattel E.:
Selections and orderability. Proc. Amer. Math. Soc. 83 601-605 (1981).
MR 0627702 |
Zbl 0473.54010
[Mi] Michael E.:
Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 152-182 (1951).
MR 0042109 |
Zbl 0043.37902
[Mr] Mrówka S.:
Some set-theoretic constructions in topology. Fund. Math. 94 83-92 (1977).
MR 0433388
[Si] Simon P.:
A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae 21 749-753 (1980).
MR 0597764 |
Zbl 0466.54022