Article
Keywords:
bundle functors; natural transformations; natural affinors
Summary:
Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved.
References:
[1] Doupovec M., Kolář I.:
Natural affinors on time-dependent Weil bundles. Arch. Math. Brno 27 (1991), 205-209.
MR 1189217
[2] Gancarzewicz J., Kolář I.:
Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100.
MR 1246623
[3] Kolář I., Michor P. W., Slovák J.:
Natural operations in differential geometry. Springer-Verlag, Berlin, 1993.
MR 1202431
[4] Kolář I., Mikulski W.M.:
Contact elements on fibered manifolds. to appear in Czech Math. J.
MR 2018847
[5] Kolář I., Modugno M.:
Torsions of connections on some natural bundles. Differential Geom. Appl. 2 (1992), 1-16.
MR 1244453
[6] Kolář I., Vosmanská G.:
Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181-185.
MR 1063764
[7] Kurek J.:
Natural affinors on higher order cotangent bundles. Arch. Math. Brno 28 (1992), 175-180.
MR 1222284
[8] Mikulski W.M.:
Natural affinors on $r$-jet prolongation of the tangent bundles. Arch. Math. Brno 34(2) (1998), 321-328.
MR 1645340
[9] Mikulski W.M.:
Natural affinors on $(J^rT^*)^*$. Arch. Math. Brno 36(4) (2000), 261-267.
MR 1811170
[10] Mikulski W.M.:
The natural affinors on $øtimes^kT^{(r)}$. Note di Matematica 19(2) (1999), 269-274.
MR 1816880
[11] Mikulski W.M.:
The natural affinors on generalized higher order tangent bundles. to appear.
MR 1884952 |
Zbl 1048.58004
[12] Zajtz A.:
On the order of natural operators and liftings. Ann. Polon. Math. 49 (1988), 169-178.
MR 0983220