[1] Aparicio A., Oca na F., Paya R., Rodriguez A.:
A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges. Glasgow Math. J. 28 (1986), 121-137.
MR 0848419
[2] Becerra J., Rodriguez A.:
The geometry of convex transitive Banach spaces. Bull. London Math. Soc. 31 (1999), 323-331.
MR 1673411 |
Zbl 0921.46006
[3] Bourgin R.D.:
Geometric aspects of convex sets with the Radon-Nikodym property. Lecture Notes in Mathematics 993, Springer-Verlag, Berlin, 1983.
MR 0704815 |
Zbl 0512.46017
[4] Cabello F.:
Maximal symmetric norms on Banach spaces. Proc. Roy. Irish Acad. 98A (1998), 121-130.
MR 1759425 |
Zbl 0941.46008
[5] Day M.M.:
Normed linear spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer-Verlag, Berlin, 1973.
MR 0344849 |
Zbl 0583.00016
[6] Deville R., Godefroy G., Zizler V.:
Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Math. 64, New York. 1993.
MR 1211634 |
Zbl 0782.46019
[7] Finet C.:
Uniform convexity properties of norms on superreflexive Banach spaces. Israel J. Math. 53 (1986), 81-92.
MR 0861899
[8] Franchetti C., Paya R.:
Banach spaces with strongly subdifferentiable norm. Bolletino U.M.I. 7-B (1993), 45-70.
MR 1216708 |
Zbl 0779.46021
[9] Giles J.R., Gregory D.A., Sims B.:
Characterisation of normed linear spaces with Mazur's intersection property. Bull. Austral. Math. Soc. 18 (1978), 105-123.
MR 0493266 |
Zbl 0373.46028
[10] Kalton N.J., Wood G.V.:
Orthonormal systems in Banach spaces and their applications. Math. Proc. Cambridge Philos. Soc. 79 (1976), 493-510.
MR 0402471 |
Zbl 0327.46022
[11] Skorik A., Zaidenberg M.:
On isometric reflexions in Banach spaces. Math. Physics, Analysis, Geometry 4 (1997), 212-247.
MR 1484353