Previous |  Up |  Next

Article

Keywords:
precover; cover; hereditary torsion theory $\sigma $; $\sigma $-injective module; $\sigma $-exact module; $\sigma $-pure submodule
Summary:
Recently Rim and Teply [11] found a necessary condition for the existence of $\sigma$-torsionfree covers with respect to a given hereditary torsion theory for the category $R$-mod. This condition uses the class of $\sigma$-exact modules; i.e. the $\sigma$-torsionfree modules for which every its $\sigma$-torsionfree homomorphic image is $\sigma$-injective. In this note we shall show that the existence of $\sigma$-torsionfree covers implies the existence of $\sigma$-exact covers, and we shall investigate some sufficient conditions for the converse.
References:
[1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules. Graduate Texts in Mathematics, vol.13 Springer-Verlag (1974). MR 0417223 | Zbl 0301.16001
[2] Bican L., El Bashir R., Enochs E.: All modules have flat covers. Bull. London Math. Soc. 33 (2001), 385-390. MR 1832549 | Zbl 1029.16002
[3] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals. Marcel Dekker New York (1982). MR 0655412
[4] Bican L., Torrecillas B.: On covers. J. Algebra 236 (2001), 645-650. MR 1813494 | Zbl 0973.16002
[5] Bican L., Torrecillas B.: Precovers. to appear. MR 1962008 | Zbl 1016.16003
[6] Bican L., Torrecillas B.: On the existence of relative injective covers. to appear. MR 1905180 | Zbl 1006.16006
[7] Enochs E.: Injective and flat covers, envelopes and resolvents. Israel J. Math. 39 (1981), 189-209. MR 0636889 | Zbl 0464.16019
[8] García Rozas J.R., Torrecillas B.: On the existence of covers by injective modules relative to a torsion theory. Comm. Algebra 24 (1996), 1737-1748. MR 1386494
[9] Golan J.: Torsion Theories. Pitman Monographs and Surveys in Pure an Applied Mathematics, 29 Longman Scientific and Technical (1986). MR 0880019 | Zbl 0657.16017
[10] Rada J., Saorín M.: Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra 26 (1998), 899-912. MR 1606190 | Zbl 0908.16003
[11] Rim S.H., Teply M.L.: On coverings of modules. to appear. MR 1791327 | Zbl 0985.16017
[12] Teply M.: Torsion-free covers II. Israel J. Math. 23 (1976), 132-136. MR 0417245 | Zbl 0321.16014
[13] Torrecillas B.: T-torsionfree T-injective covers. Comm. Algebra 12 (1984), 2707-2726. MR 0757788
[14] Xu J.: Flat covers of modules. Lecture Notes in Mathematics, 1634, Springer Verlag Berlin-Heidelberg-New York (1996). MR 1438789 | Zbl 0860.16002
Partner of
EuDML logo