[1] Edwards R.E.:
Functional Analysis, Theory and Applications. Holt, Reinehart and Winston, New York, 1965.
MR 0221256 |
Zbl 0189.12103
[2] Floret K., Wloka J.:
Einführung in die Theorie der lokalkonvexen Räumen. Springer-Verlag, Berlin, Heidelberg, New York, 1968.
MR 0226355
[3] Grabiner S.:
The nilpotency of Banach nil algebras. Proc. Amer. Math. Soc. 21 (1969), 510.
MR 0236700 |
Zbl 0174.44602
[4] Hadwin D., Nordgren E., Radjabalipour M., Radjavi H., Rosenthal P.:
On simultaneous triangularization of collection of operators. Houston J. Math. 17 (1991), 581-602.
MR 1147275
[5] Katavolos A., Radjavi H.:
Simultaneous triangulation of operators on a Banach space. J. London Math. Soc. 41 (1990), 547-554.
MR 1072047
[6] Kramar E.:
Invariant subspaces for some operators on locally convex spaces. Comment. Math. Univ. Carolinae 38 (1997), 635-644.
MR 1601676 |
Zbl 0937.47005
[7] Litvinov G.L., Lomonosov V.I.:
Density theorems in locally convex spaces and theirs applications (in Russian). Trudi sem. vekt. i tenz. analiza 20 (1981), 210-227.
MR 0622018
[8] Lomonosov V.I.:
Invariant subspace of operators commuting with compact operators. Funct. Anal. Appl. 7 (1973), 213-214.
MR 0420305
[9] Ma T.W.:
On rank one commutators and triangular representations. Canad. Math. Bull. 29 (1986), 268-273.
MR 0846703 |
Zbl 0555.47004
[10] Mendoza R.V.:
The $(\Gamma , t)$-topology on $L(E,E)$ and the spectrum of a bounded linear operator on a locally convex topological vector space. Bol. Soc. Mat. Mexicana 3 (1997), 151-164.
MR 1452669 |
Zbl 0905.46004
[11] Radjavi H., Rosenthal P.:
From local to global triangularization. J. Funct. Anal. 147 (1997), 443-456.
MR 1454489 |
Zbl 0902.47019
[12] Ringrose J.R.:
Super-diagonal forms for compact linear operators. Proc. London Math. Soc. (3) 12 (1962), 367-384.
MR 0136998 |
Zbl 0102.10301
[13] Uss P.:
Sur les opérateurs bornés dans les espaces localement convexes. Studia Math. 37 (1971), 139-158.
MR 0303328 |
Zbl 0212.15901