Previous |  Up |  Next

Article

Keywords:
almost realcompact; almost$^*$ realcompact; almost weak Oz; super countably paracompact; rc=s
Summary:
We provide a new generalization of realcompactness based on ultrafilters of cozero sets and contrast it with almost realcompactness.
References:
[1] Chigogidze A.: On a generalization of perfectly normal spaces. Topology Appl. 13 (1982), 15-20. MR 0637423 | Zbl 0486.54013
[2] Dow A., van Mill J.: An extremally disconnected Dowker space. Proc. Amer. Math. Soc. 86 (1982), 669-672. MR 0674103 | Zbl 0502.54043
[3] Dykes N.: Mappings and realcompact spaces. Pacific J. Math. 31 (1969), 347-358. MR 0263039 | Zbl 0185.26402
[4] Dykes N.: Generalizations of realcompact spaces. Pacific J. Math. 33 (1970), 571-581. MR 0276928 | Zbl 0197.19201
[5] Engelking R.: General Topology. Heldermann Verlag Berlin (1989). MR 1039321 | Zbl 0684.54001
[6] Frolík Z.: A generalization of realcompact spaces. Czech. Math. J. 13 (1963), 127-138. MR 0155289
[7] Frolík Z.: Prime filters with CIP. Comment. Math. Univ. Carolinae 13.3 (1972), 553-575. MR 0315648
[8] Gillman L., Jerison M.: Rings of Continuous Functions. University Series in Higher Math. Van Nostrand Princeton New Jersey (1960). MR 0116199 | Zbl 0093.30001
[9] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring. Trans. Amer. Math. Soc. 115 (3) (1965), 110-130. MR 0194880 | Zbl 0147.29105
[10] Mandelker M.: Supports of continuous functions. Trans. Amer. Math. Soc. 156 (1971), 73-83. MR 0275367 | Zbl 0197.48703
[11] Mysior A.: A union of realcompact spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. XXIX (3-4) (1981), 169-172. MR 0638760 | Zbl 0469.54011
[12] Porter J., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag New York, Heidelberg, Berlin (1988). MR 0918341 | Zbl 0652.54016
[13] Schommer J.: A characterization of realcompactness. Acta Mathematica Hungarica 72 (4) (1996), 319-322. MR 1406400 | Zbl 0860.54025
[14] van der Slot J.: Some Properties Related to Compactness. Mathematisch Centrum (1976), Amsterdam Mathematical Centre Tracts 19. MR 0247607
[15] Weir M.: Hewitt-Nachbin Spaces. North Holland Math. Studies American Elsevier New York (1975). MR 0514909 | Zbl 0314.54002
Partner of
EuDML logo