Previous |  Up |  Next

Article

Keywords:
nearly uniformly convex; uniform Kadec-Klee property; Kadec-Klee property; Musielak-Orlicz sequence space; fixed point property
Summary:
In this paper, we give necessary and sufficient conditions for a point in a Musielak-Orlicz sequence space equipped with the Orlicz norm to be an {\bf H}-point. We give necessary and sufficient conditions for a Musielak-Orlicz sequence space equipped with the Orlicz norm to have the {\it Kadec-Klee} property, the uniform {\it Kadec-Klee} property and to be nearly uniformly convex. We show that a Musielak-Orlicz sequence space equipped with the Orlicz norm has the fixed point property if and only if it is reflexive.
References:
[1] Chen S.: Geometry of Orlicz spaces. Dissertation Math., Warsaw, 1996. MR 1410390 | Zbl 1089.46500
[2] Cui Y.A., Hudzik H.: Maluta coefficient and Opial property in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm. Nonlinear Anal. Theory Methods & Appl., to appear. MR 1656529
[3] Cui Y.A., Hudzik H., Nowak M., Pluciennik R.: Some geometric properties in Orlicz sequence spaces equipped with the Orlicz norm. J. Convex Anal. 6 (1999), 91-113. MR 1713953
[4] Denker M., Hudzik H.: Uniformly non-$l_n^{(1)}$ Musielak-Orlicz sequence spaces. Proc. Indian. Acad. Sci. 101.2 (1991), 71-86. MR 1125480
[5] Diestel J.: Sequence and Series in Banach Spaces. Graduate Texts in Math. 92, Springer-Verlag, 1984. MR 0737004
[6] Dowling P.R., Lennard C.J., Turett B.: Reflexivity and the fixed-point property for nonexpansive maps. J. Math. Anal. Appl. 200 (1996), 653-662. MR 1393106 | Zbl 0863.47038
[7] Dulst D., Sims B.: Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK). Banach Space Theory and its Applications (Bucharest, 1981), pp.35-43; Lecture Notes in Math. 991, Springer, Berlin-New York, 1983. MR 0714171 | Zbl 0512.46015
[8] Goebel K., Sekowski T.: The modulus of non-compact convexity. Ann. Univ. Maria Curie-Sklodowska, Sect. A 38 (1984), 41-48. MR 0856623
[9] Goebel R., Kirk W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, 1990. MR 1074005
[10] Hudzik H., Kaminska A.: Some remarks on convergence in Orlicz spaces. Comment. Math. 21 (1979), 81-88. MR 0577673
[11] Hudzik H., Ye Y.: Support functionals and smoothness in Musielak-Orlicz sequence spaces equipped with the Luxemburg norm. Comment. Math. Univ. Carolinae 31.4 (1990), 661-684. MR 1091364
[12] Huff R.: Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 473-749. MR 0595102 | Zbl 0505.46011
[13] Kadec M.I.: Relations between some properties of convexity of the ball of a Banach spaces. Functional Anal. Appl. 16 (1982), 93-100.
[14] Kaminska A.: Uniform rotundity of Musielak-Orlicz sequence spaces. J. Approx. Theory 47.4 (1986), 302-322. MR 0862227 | Zbl 0606.46003
[15] Kaminska A.: Flat Orlicz-Musielak sequence spaces. Bull. Acad. Polon. Sci. Math. 30 (1982), 347-352. MR 0707748 | Zbl 0513.46008
[16] Kantorovic L.V., Akilov G.P.: Functional Analysis (in Russian). 2nd edition, Moscow, 1978. MR 0511615
[17] Musielak J.: Orlicz spaces and modular spaces. Lecture Notes in Math. 1034, Springer Verlag, Berlin, 1983. MR 0724434 | Zbl 0557.46020
[18] Pluciennik R., Wang T., Zhang Y.: H-point and denting points in Orlicz spaces. Comment. Math. 33 (1993), 135-151. MR 1269408
[19] Rao M.M., Ren Z.D.: Theory of Orlicz spaces. Marcel Dekker Inc., New York, Basel, HongKong, 1991. MR 1113700 | Zbl 0724.46032
[20] Wu Congxin, Sun Huiying: Norm calculations and complex rotundity of Musielak-Orlicz sequence spaces. Chinese Math. Ann. 12A (Special Issue) 98-102.
Partner of
EuDML logo