Previous |  Up |  Next

Article

Keywords:
effect algebras; divisible effect algebras; words; po-groups
Summary:
It is shown that divisible effect algebras are in one-to-one correspondence with unit intervals in partially ordered rational vector spaces.
References:
[1] Baer R.: Free sums of groups and their generalizations. An analysis of the associative law. Amer. J. Math. 41 (1949), 706-742. MR 0030953 | Zbl 0033.34504
[2] Bennett M.K., Foulis D.J.: Interval and scale effect algebras. Adv. in Appl. Math. 19 (1997), 200-215. MR 1459498 | Zbl 0883.03048
[3] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneaux Réticulés. Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653 | Zbl 0384.06022
[4] Bugajski S.: Fundamentals of fuzzy probability theory. Internat. J. Theoret. Phys. 35 (1996), 2229-2244. MR 1423402 | Zbl 0872.60003
[5] Bush P., Grabowski M., Lahti P.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. MR 1356220
[6] Cignoli R., D'Ottaviano I.M.L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publ., Dordrecht 2000. MR 1786097 | Zbl 0937.06009
[7] Dalla Chiara M.L., Giuntini R.: Quantum logic. in Handbook of Philosophical logic, Eds. D. Gabbay, F. Guenthner, Kluwer Acad. Publ., Dordrecht, to appear. MR 1818789 | Zbl 0969.03070
[8] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000. MR 1861369
[9] Dvurečenskij A., Riečan B.: Weakly divisible MV-algebras and product. J. Math. Anal. Appl. 234 (1999), 208-222. MR 1694841
[10] Foulis D.J., Bennett M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 37 (1994), 1325-1346. MR 1304942
[11] Foulis D.J., Greechie R.J., Bennett M.K.: Sums and products of interval effect algebras. Internat. J. Theoret. Phys. 33 (1994), 2119-2136. MR 1311152
[12] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford-London-New York-Paris, 1963. MR 0171864 | Zbl 0137.02001
[13] Goodearl K.R.: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs No 20, Amer. Math. Soc., Providence, Rhode Island, 1986. MR 0845783 | Zbl 0589.06008
[14] Gudder S., Pulmannová S.: Representation theorem for convex effect algebras. Comment. Math. Univ. Carolinae 39 (1998), 645-659. MR 1715455
[15] Gudder S.P. et all.: Convex and linear effect algebras. Rep. Math. Phys. 44 (???), 359-379. MR 1737384 | Zbl 0956.46002
[16] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21-34. MR 1290269
[17] Ludwig G.: Foundations of Quantum Mechanics. Springer-Verlag, New York, 1983. MR 0690770 | Zbl 0574.46057
[18] Mundici D.: Interpretations of AF C*-algebras in Lukasziewicz sentential calculus. J. Funct. Anal. Appl. 65 (1986), 15-63. MR 0819173
[19] Pulmannová S.: Effect algebras with the Riesz decomposition property and AF C*-algebras. Found. Phys. 29 (1999), 1389-1400. MR 1739751
[20] Ravindran K.: On a structure theory of effect algebras. PhD Thesis, Kansas State University, Mahattan Kansas, 1996.
[21] Wyler O.: Clans. Compositio Math. 17 (1966/67), 172-189. MR 0197368
Partner of
EuDML logo